
AGE Documentation: addendum for version 1.1

Adam Nohejl

24 November 2011



Copyright © 2011, Adam Nohejl.
All rights reserved.

This work is licensed under the Creative Commons Attribution 3.0 Czech Republic
Licence. More information and its full text:
http://creativecommons.org/licenses/by/3.0/cz/deed.en_GB
or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.

You are free:
to copy, distribute, display and perform the work,
to make derivative works,
to make commercial use of the work
under the following condition:

Attribution: You must give the original author credit.

With the understanding that:
• Waiver: Any of the above conditions can be waived if you get permission

from the copyright holder.
• Public Domain: Where the work or any of its elements is in the public domain

under applicable law, that status is in no way affected by the licence.
• Other Rights: In no way are any of the following rights affected by the licence:

your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations; the author’s moral rights; rights other persons may have
either in the work itself or in how the work is used, such as publicity or
privacy rights.

• Notice: For any reuse or distribution, you must make clear to others the
licence terms of this work.

2

http://creativecommons.org/licenses/by/3.0/cz/deed.en_GB


Chapter 1

Introduction

This addendum documents new features, including new applications, in AGE
version 1.1. The remaining documentation is in the Documentation.pdf file
based on my bachelor thesis. I hope I will get round to putting it all together and
separating from the general stuff and experiments in my bachelor thesis (there is
currently a lot of cross-references). I also want to add relevant information from
my master thesis (Nohejl, 2011).

3



Chapter 2

User Documentation: Additions
in version 1.1

2.1 Command line interface
Square brackets denote optional command line options. The following options
have been added in version 1.1:

Algorithm options
[-T] forces generation of derivation trees (normally not generated for GE) ne-

cessary to compute bushiness statistics.

Execution options
[-F] halts a sequence of runs when success (as specified by -f) is reached.

File output options
[-i] includes only the best-of-generation individual the XML output.

2.2 Implemented components
Each component is listed under the name of the class that implements it, which
is followed by a description and three short sections:

Argument: The argument form to be used for the corresponding command line
option in order to specify an algorithm element. Arguments that do not
have any options are simple labels, such as roulette for roulette-wheel
selection. A roulette-wheel selection is therefore specified by -S roulette.
Arguments that have parameters are in one of the following forms:

label(m1,...,mM)

label(m1,...,mM [,o1,...,oN ])
label([o1,...,oN ])

4



where label identifies the algorithm element, m1 tomM are mandatory para-
meters, and o1 to oN are optional parameters, which have default values.
Parentheses and commas are part of the syntax. The parameters are pos-
itional, which means that you can supply the first n ≤ N of the optional
parameters, but not for instance only the first one and the third one. If
there are no mandatory parameters and you do not supply any optional
ones, the enclosing parenthesis can be omitted. If you invoke AGE from a
standard Unix shell, any parentheses will have to be quoted or escaped.
For instance the argument tour([t]) for tournament selection means that
the tournament selection has one optional parameter t (the tournament
size). Tournament selection can therefore be specified as -S tour to use the
default tournament size, or as -S tour(4) to use a size of 4, in which case
the command line options will usually have to be entered as -S 'tour(4)'
or -S tour\(4\).

Interface: The source file that contains the interface of the component. Recurs-
ively included header files are not listed. Additionally, all implemented
algorithm elements can be including using the convenience header file Ele-
ments.h.

Implementation: The source files that contain the implementation of a compon-
ent. The files the implementation depends on are listed only if they are not
part of the AGE library.

This following components have been newly implemented or updated.

2.2.1 Initialisers
RampedInitialiser implements a generalisation of the “sensible” initialisation

method, which in turn is based on Koza’s ramped half-and-half initialisa-
tion. See Documentation.pdf for more information. (Only the cd option
has been added in v1.1.)

Argument: ramped(m-n[,stoch,grow,oneill,u,tl,tr,cd])
m to n (inclusive) is the range of derivation tree heights, m = 0 is

replaced by the lowest height possible for a given grammar;
stoch indicates whether the “grow” rate is to be interpreted as a

probability (1), or a ratio (0, default);
grow is the “grow” rate from [0, 1], default: 0.5;
oneill indicates whether recursive productions receive special treat-

ment “O’Neill-style” (1), or not (0, default), see ??;
u indicates whether each generated tree is unique (1), or not (0,

default);
tl is the absolute length of the tail of random codons (default: 0);
tr is the ratio of the tail length to the significant part length (de-

fault: 0).
cd (new in v1.1) indicates whether codon-level degeneracy is ap-

plied (default: 1).
At least one of tl and tr must be 0.

5



Interface: RampedInitialiser.h

Implementation: RampedInitialiser.cpp

CFGGPInitialiser implements the “grow” initialisation method for CFG-GP
(Whigham, 1995). Also see Nohejl (2011).

Argument: cfggp(maxHeight[,u])
maxHeight is the maximum height of generated derivation trees;
u indicates whether each generated tree is unique (1), or not (0,

default);

Interface: CFGGPInitialiser.h

Implementation: CFGGPInitialiser.cpp

2.2.2 Fitness scalings
GreedyFitnessScaling implements the greedy overselection technique used by

Koza (1992) for large populations as a fitness scaling. Automatically uses
the quantitative parameters used by Koza according to population size.
It should be used in conjunction with roulette-wheel selection. Results of
Koza’s original implementation may depend on the sort algorithm if some
individuals with an “edge” fitness value do not fit. The just parameter can
be used to include them at the cost of somewhat diluting the overselection.

Argument: greedy([just])
just indicates whether to force the same overselection of individuals

with equal fitness values (0, default).

Interface: FitnessScalings.h

Implementation: FitnessScalings.cpp

2.2.3 Crossover operators
A probability of any crossover operator (incidentally only one is currently imple-
mented) is set by the -x command line option, separately from other parameters.

CFGGPCrossover implements CFG-GP tree-based crossover (Whigham, 1995).
Also see Nohejl (2011).

Argument: cfggp([ir,alt])
ir is the probability from [0, 1] of picking an internal node for cros-

sover, or alternatively −1.0 to pick nodes regardless of type, de-
fault: -1;.

alt indicates the type of node alternative to internal: 1 means ex-
ternal, 0 means any, default: 1.

Interface: CFGGPOperators.h

Implementation: CFGGPOperators.cpp

6



2.2.4 Mutation operators
A probability of mutation operators is set by the -m command line option, sep-
arately from other parameters.

CFGGPMutation implements CFG-GP tree-based mutation (Whigham, 1995).
Also see Nohejl (2011).

Argument: cfggp([ir,alt,maxHeight])
ir is the probability from [0, 1] of picking an internal node for cros-

sover, or alternatively −1.0 to pick nodes regardless of type, de-
fault: -1;.

alt indicates the type of node alternative to internal: 1 means ex-
ternal, 0 means any, default: 1.

maxHeight is the maximum height of newly generated subtrees, 0
denotes the height of the subtree that is being replaced, default:
no limit.

Interface: CFGGPOperators.h

Implementation: CFGGPOperators.cpp

2.2.5 Applications
DotProductFitnessEvaluator implements dot product symbolic regression (Wong

and Leung, 2000), used for experiments in my master thesis (Nohejl, 2011).

Argument: dot([variant, maxWraps, maxHeight, bnf ])
variant identifies the variant of the problem, either dot (default, the

dot product) or adf (the expression ~x · ~y + ~y · ~z).
maxWraps is the maximum number of wrapping events, default: 3.
maxHeight is the maximum tree height, default: 20.
bnf is path to the BNF grammar file, default: based on variant.

Interface: App-DotProductFitnessEvaluator.h

Implementation: App-DotProductFitnessEvaluator.cpp

BooleanParityFitnessEvaluator implements the boolean parity symbolic re-
gression (Koza, 1992), used for experiments in my master thesis (Nohejl,
2011).

Argument: parity([odd, arity, maxWraps, maxHeight, bnf ])
odd indicates whether to target the odd (1) or even (0, default) parity

function.
arity is the arity of the parity function, default: 3.
maxWraps is the maximum number of wrapping events, default: 3.
maxHeight is the maximum tree height, default: 20.
bnf is path to the BNF grammar file, default: a simple GP-like gram-

mar without ADFs based on arity.
Interface: App-BooleanParityFitnessEvaluator.h

Implementation: App-BooleanParityFitnessEvaluator.cpp

7



TimeTablingFitnessEvaluator implements the exam timetabling problem (Bader-
El-Den et al., 2009), used for experiments in my master thesis (Nohejl,
2011).

Argument: tt([alpha, ttData, maxWraps, maxHeight, bnf ])
alpha is the α constant for the fitness formula (Bader-El-Den et al.,

2009), default: 100000.
ttData is the problem data file, it can be any of car91, car92, ear83,

hec92, kfu93, lse91, sta83, tre92, uta92, yor83 (Carter et al.,
1996) or an external path, default: sta83.

maxWraps is the maximum number of wrapping events, default: 3.
maxHeight is the maximum tree height, default: 20.
bnf is path to the BNF grammar file, default: based on (Bader-El-

Den et al., 2009).
Interface: App-TimeTablingFitnessEvaluator.h

Implementation: App-TimeTablingFitnessEvaluator.cpp,
App-TimeTabling.h, App-TimeTabling.cpp

8



Bibliography

Mohamed Bahy Bader-El-Den, Riccardo Poli, and Shaheen Fatima. Evolving
timetabling heuristics using a grammar-based genetic programming hyper-
heuristic framework. Memetic Computing, 1(3):205–219, 2009.

Michael W. Carter, Gilbert Laporte, and Sau Yan Lee. Examination timetabling:
Algorithmic strategies and applications. J Oper Res Soc, 47(3):373–383, 03
1996. URL http://dx.doi.org/10.1057/jors.1996.37.

John R. Koza. Genetic programming: On the programming of computers by
natural selection. MIT Press, 1992. ISBN 0-262-11170-5.

Adam Nohejl. Grammar-based genetic programming. Master thesis, available
at http://nohejl.name/age/pdf/Adam-Nohejl-2011-Grammar-based-GP.
pdf, 2011.

Peter Whigham. Inductive bias and genetic programming. In First International
Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, GALESIA, pages 461–466, 1995.

Man Leung Wong and Kwong Sak Leung. Data Mining Using Grammar-Based
Genetic Programming and Applications. Kluwer Academic Publishers, Norwell,
MA, USA, 2000. ISBN 079237746X.

9

http://dx.doi.org/10.1057/jors.1996.37
http://nohejl.name/age/pdf/Adam-Nohejl-2011-Grammar-based-GP.pdf
http://nohejl.name/age/pdf/Adam-Nohejl-2011-Grammar-based-GP.pdf

	Introduction
	User Documentation: Additions in version 1.1
	Command line interface
	Implemented components
	Initialisers
	Fitness scalings
	Crossover operators
	Mutation operators
	Applications



