
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Adam Nohejl

Grammatical Evolution

Department of Software and Computer Science Education

Supervisor: RNDr. František Mráz, CSc.
Study programme: Computer Science, General Computer Science

2009, last revision 2011 (version 1.0.2)

Univerzita Karlova v Praze
Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE

Adam Nohejl

Grammatical Evolution

Kabinet software a výuky informatiky

Vedoucí bakalářské práce: RNDr. František Mráz, CSc.
Studijní program: Informatika, Obecná informatika

2009, poslední revize 2011 (verze 1.0.2)

I thank to František Mráz, who supervised my work on this thesis, for his guidance
and careful reading.

I also acknowledge the work done by others on the libGE and GEVA open-
source projects. While my work does not derive directly from theirs, both projects
helped me tremendously in designing AGE. I hope that I have succeeded in
emulating what they do well, and that I have not repeated too many of their
mistakes. I have certainly made enough mistakes of my own.

Last, but not least, this thesis would not be possible without the research
and publications on evolutionary algorithms I have built on. Two works deserve
a special mention: Grammatical Evolution by Michael O’Neill and Conor Ryan,
who developed the methods of grammatical evolution, which are the subject of
this thesis; and A Field Guide to Genetic Programming by Ricardo Poli and
others, who kindly published an invaluable guide to GP as a free download.

The text was typeset using the pdfTEX typesetter and the LATEX macro package in
the Latin Modern fonts and Helvetica. The diagrams were drawn in the fabulous
OmniGraffle software. Plotting was done using the R graphics package, which is
part of the open-source R Project for Statistical Computing.

Copyright © 2008–2011, Adam Nohejl.
All rights reserved.

This work is licensed under the Creative Commons Attribution 3.0 Czech Republic
Licence. More information and its full text:
http://creativecommons.org/licenses/by/3.0/cz/deed.en_GB

You are free: to copy, distribute, display and perform the work, to make deriv-
ative works, to make commercial use of the work under the following condition:

Attribution: You must give the original author credit.

With the understanding that:
• Waiver: Any of the above conditions can be waived if you get permission from

the copyright holder.
• Public Domain: Where the work or any of its elements is in the public domain

under applicable law, that status is in no way affected by the licence.
• Other Rights: In no way are any of the following rights affected by the licence:

your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations; the author’s moral rights; rights other persons may have either in
the work itself or in how the work is used, such as publicity or privacy rights.

• Notice: For any reuse or distribution, you must make clear to others the licence
terms of this work.

Both this text and the accompanying software project can be downloaded from
http://nohejl.name/age/.

http://creativecommons.org/licenses/by/3.0/cz/deed.en_GB
http://nohejl.name/age/

Contents

1 Introduction 11

2 Introduction to Grammatical Evolution 13
2.1 Genetic programming . 13
2.2 Fitness, a broader view . 16
2.3 Genotype and phenotype . 18
2.4 Grammatical evolution . 19
2.5 GE example: symbolic regression 21

2.5.1 Grammar . 21
2.5.2 Fitness function . 22
2.5.3 Evaluation of example individuals 24

2.6 Search algorithm elements . 25
2.6.1 Initialisation . 27
2.6.2 Fitness evaluation . 27
2.6.3 Selection . 27
2.6.4 Fitness scaling . 28
2.6.5 Operators . 29
2.6.6 Variations to the algorithm 30

3 Existing Implementations 32
3.1 libGE . 32
3.2 GEVA . 34
3.3 Other implementations . 38
3.4 Conclusion . 38

4 Goals 39
4.1 Implementation of standard algorithms 39
4.2 Modularity . 40
4.3 Documentation . 40
4.4 Output and results . 40
4.5 Performance . 41

5 Design Decisions 42
5.1 Overall design . 42
5.2 Ramped initialisation . 44
5.3 Evaluation in C and Lua . 44
5.4 Mutation operators . 45
5.5 Portability . 46

6 User Documentation 48
6.1 Building and installation . 48
6.2 Command line interface . 51
6.3 Implemented components . 56

6.3.1 Initialisers . 56
6.3.2 Selectors . 57
6.3.3 Fitness scalings . 58
6.3.4 Crossover operators . 59
6.3.5 Mutation operators . 59
6.3.6 Implemented applications 60

6.4 File formats . 61
6.4.1 XML data . 61
6.4.2 Text data . 65

6.5 Application programming interface 66
6.5.1 Basic data types . 67
6.5.2 Errors . 68
6.5.3 Random numbers . 69
6.5.4 Fitness . 70
6.5.5 Individuals . 71
6.5.6 Components . 75
6.5.7 Grammatical evolution . 82
6.5.8 Command line tool . 84

6.6 Tutorial for application developers 91
6.7 Licence . 100

7 Developer Documentation 102
7.1 Selection schemes . 102
7.2 Fast bit-level mutation . 103

8 Experiments 106
8.1 Methodology . 106
8.2 Symbolic regression . 107

8.2.1 Initial experiment . 107
8.2.2 Comparison of results with GEVA 109
8.2.3 Further experiments . 112

8.3 Santa Fe ant trail . 113
8.3.1 Initial experiment . 115
8.3.2 Comparison of results with GEVA 115
8.3.3 Further experiments . 119

8.4 Conclusion . 120

9 Conclusion 121
9.1 Summary . 121
9.2 Ideas for further research . 122

10 Changes to the Original Text 125

Title: Grammatical Evolution
Author: Adam Nohejl
Department: Department of Software and Computer Science Education
Supervisor: RNDr. František Mráz, CSc.
Supervisor’s e-mail address: mraz@ksvi.mff.cuni.cz

Abstract: Grammatical evolution (GE) is a recent grammar-based approach to
genetic programming that allows development of solutions in an arbitrary pro-
gramming language. Its existing implementations lack documentation and do not
provide reproducible results suitable for further analysis. This thesis summarises
the methods of GE and the standard methods used in evolutionary algorithms,
and reviews the existing implementations, foremost the only actively developed
one, GEVA. A new comprehensive software framework for GE is designed and
implemented based on this review. It is modular, well-documented, portable, and
gives reproducible results. It has been tested in two benchmark applications, in
which it showed competitive results and outperformed GEVA 10 to 29 times in
computational time. It is also shown how to further improve the performance
and results by using techniques unsupported by GEVA, including new modific-
ations to the previously published methods of bit-level mutation and “sensible”
initialisation. The thesis and the software together form a solid foundation for
further experiments and research.

Keywords: grammatical evolution, genetic programming, evolutionary
algorithms.

Název práce: Gramatická evoluce
Autor: Adam Nohejl
Katedra: Kabinet software a výuky informatiky
Vedoucí bakalářské práce: RNDr. František Mráz, CSc.
E-mail vedoucího: mraz@ksvi.mff.cuni.cz

Abstrakt: Gramatická evoluce (GE) je nový přístup ke genetickému programo-
vání s užitím gramatiky, který umožňuje vývoj řešení v libovolném programova-
cím jazyce. Její existující implementace nemají dostatečnou dokumentaci a nepo-
skytují reprodukovatelné výsledky vhodné pro další analýzu. Tato práce shrnuje
metody GE a standardní metody užívané v evolučních algoritmech, a zkoumá
existující implementace, především jedinou aktivně vyvíjenou, software GEVA.
Na základě toho je navrženo a implementováno nové komplexní prostředí pro GE.
Je modulární, dobře dokumentované, přenositelné, a poskytuje reprodukovatelné
výsledky. Bylo testováno ve dvou standardních testovacích úlohách, v nichž do-
sáhlo srovnatelných výsledků a 10krát až 29krát lepšího výkonu než GEVA. Dále
je předvedeno, jak ještě zlepšit výsledky a výkon pomocí technik nepodporova-
ných v GEVA, mimo jiné nových úprav již publikovaných metod bitové mutace a
„citlivé“ inicializace („sensible“ initialisation). Tato práce a software tvoří dobrý
základ pro další výzkum.

Klíčová slova: gramatická evoluce, genetické programování, evoluční algoritmy.

Chapter 1

Introduction

Evolutionary principles have been used to solve computational and other prob-
lems automatically for almost half a century.1 In the 1960s evolutionary program-
ming (EP) pioneered by Lawrence J. Fogel was used to develop finite state ma-
chines, employing mutation and fitness-based reproduction. Roughly at the same
time Ingo Rechenberg and Hans-Paul Schwefel applied evolutionary strategies
(ES) to hydrodynamic problems, at first evolving only one real-valued vector at
a time. Later, in the seventies, genetic algorithms (GA) developed by John Hol-
land, his students and colleagues have put emphasis on sexual reproduction and
fitness-proportional selection. While GA evolved fixed-length binary individu-
als (solution candidates), in the subsequent genetic programming (GP) individu-
als were in the form of computer programs. The best known work on genetic
programming is John Koza’s book of the same name (1992), although earlier
examples exist.2 These methods are collectively called evolutionary algorithms
(EA).

From then on many refinements to evolutionary algorithms were both pro-
posed by research and implemented in software projects ranging from simple
demonstration tools to full-fledged environments. One of these refinements, called
Grammatical Evolution (GE), is particularly promising, as it adds flexibility to
individual representation and evaluation without having any special requirements
on the evolutionary algorithm itself. That makes it possible for grammatical evol-
ution to profit from advancements in EA research (for instance in fitness scaling
methods or replacement strategies). Being used primarily to evolve computer
programs, grammatical evolution is a special case of genetic programming re-
gardless of the specific EA it is combined with. Although GE and its application
to benchmark problems have been described (O’Neill and Ryan, 2003), there is
still a lack of good software tools and verifiable results.

I hope this thesis and the accompanying software project AGE (Algorithms
1Darwinian principles were probably used in problem solving (as opposed to the pre-

ceding attempts of biologists at computer simulations of evolution) for the first time by
Lawrence J. Fogel who is sometimes described as the “father of evolutionary programming”. Ac-
cording to the web page http://www.natural-selection.com/Press/2007/pr02262007.htm
(Dr. Lawrence J. Fogel, Inventor of Evolutionary Programming, Dies at 78): “Beginning in
1960, [Fogel] devised evolutionary programming, a radical approach in artificial intelligence
that simulated evolution on computers to literally evolve solutions to problems.” Koza (1992)
cites Artificial Intelligence through Simulated Evolution published in 1966 by Fogel et al.

2A good overview of the development of EP, ES, GA and GP has been written by Banzhaf
et al. (1998, sec. 4.3).

11

http://www.natural-selection.com/Press/2007/pr02262007.htm

for Grammatical Evolution) will help the research of grammatical evolution ad-
vance. It summarises basics of the relevant theory embodied in various principles,
algorithms and techniques, and implements them in a versatile, well documented
tool. Several example applications provide results, which are compared to those
of other implementations. It is, however, not intended to deliver a complete
overview of EA and GE theory or an ultimate implementation of all algorithms
available. Throughout the text I have made references to relevant works cover-
ing topics that are out of scope of this text when I was aware of them. I have
striven to make the software framework easily extensible and to document it well.
The text and the software project together form a solid foundation for further
experiments and research.

The text is organised in the following chapters:

• Chapter 2 introduces the techniques of grammatical evolution and the un-
derlying algorithms of genetic programming, discusses GE’s advantages over
tree-based GP, and provides a walk-through example of fitness evaluation
using GE.

• Chapter 3 examines the major existing implementations, their advantages
and drawbacks. The only (publicly available) implementation of GE com-
parable in extent and documentation to AGE is GEVA. I therefore focus
on it.

• Chapter 4 sets goals for the software project based on that examination.
AGE is designed to consist of a modular framework, a command line tool,
and both user and developer documentation. While controlled from the
command line, AGE also provides means for graphical presentation and
analysis of the results.

• Chapter 5 describes and explains the major decisions taken during the
design and development of AGE.

• Chapters 6 and 7 contain the user and developer documentation.

• Chapter 8 presents several benchmark applications and analyses their res-
ults obtained from AGE.

• Chapter 9 discusses the achievements and suggests directions for further
development.

• Chapter 10 lists the changes made to the original text of the thesis, which
was defended in September 2009.

The documentation, including the documentation of the API, is part of the
thesis because there are frequent references between the documentation and the
rest of the text.

12

Chapter 2

Introduction to Grammatical
Evolution

In this chapter we will lay a theoretical foundation for a review of existing imple-
mentations of grammatical evolution, and, even more importantly, for designing
a new implementation:

• in Section 2.1, we will explain the basics of genetic programming;

• in Section 2.2, we will tackle the concept of fitness, which is central to any
evolutionary algorithm;

• in Section 2.3, we will learn about the distinction between genotype and
phenotype, which is essential to grammatical evolution;

• in Section 2.4, we will describe grammatical evolution and show its advant-
ages;

• in Section 2.5, we will go step by step through an example GE application;

• and finally, in Section 2.6, we will list and describe the building blocks of
algorithms used in GP and GE.

2.1 Genetic programming
Genetic programming (GP) is a methodology for finding solutions to problems
inspired by the evolutionary process and genetic mechanisms. GP distinguishes
itself from other evolutionary algorithms by employing the form of a computer
program for the solution candidates.1

The solution is being sought iteratively until a particular number of iterations,
called generations in this context, is reached or good enough results are obtained.
This process is called evolution.

Each generation consists of a fixed number of candidate solutions, a population

1Many of the principles described in this section apply to other EAs as well. I will again
refer those interested in more general information to Banzhaf et al. (1998, ch. 4).

13

of individuals. Individuals are usually represented by trees or linear sequences;2
either way they encode programs. Before the iterative process can begin, the
population of generation zero has to be initialised. There are several ways to
perform initialisation, some of which are suitable only for specific individual rep-
resentations; they basically consist of assigning random data to individuals. Then
a series of steps in each generation is performed:

Fitness evaluation: Programs represented by individuals, if syntactically cor-
rect, are executed and their fitness (a numerical value) is computed from
their output. The function that assigns fitness values to the output, and
consequently to the individuals, is called fitness function or objective func-
tion (a more general term used in optimisation). The fitness function de-
pends only on the application. The fitness function does not therefore have
to “know” anything about genetic programming. If individuals representing
a syntactically invalid program occur, they are usually assigned the worst
fitness possible. Low values may indicate either good or bad fitness. A
fitness function is therefore associated with a specific ordering (preference
for lower or higher values) and a range of output values.

Fitness scaling: For some methods of selection (see below) it is more convenient
to have low fitness values indicate bad fitness, to limit the values to a
certain range, or to ensure other properties. In that case fitness values
need to be transformed from raw to scaled. The choice of a scaling method
must respect both the ordering and the range of the fitness function values
and the ordering and the range of fitness values supported by the selection
scheme.

Selection: The selection of individuals for the next generation is designed to
mirror natural selection: fitter individuals have a higher chance of survival
and breeding. There are several distinct schemes, which combine random
and fitness-based selection (the fitter the individual the more likely it is to
be selected).

The selection scheme together with the scaling is said to determine the
selection pressure: how strongly the system favours the fitter compared to
the less fit. The implications of scaling and selection will be discussed in
more depth in Section 2.2.

Application of genetic operators: The most important genetic operators are
crossover and mutation. They correspond to their equivalents in genetics.
Their specific realisation stems from the representation of individuals; too

2In tree-based GP the trees are constructed from primitives: the internal nodes from func-
tions, which correspond to actual functions, operators or control structures, and the leaves from
terminals, which correspond to variables, constants or functions without arguments (Poli et al.,
2008, ch. 3). The use of linear sequences is actually common to several different approaches,
most significantly: (1) efficient representation of some kinds of trees, in which case it is a special
case of tree-based GP (Poli et al., 2008, sec. 2.1); (2) linear GP, which uses sequences of machine
code or virtual machine instructions; (3) grammatical evolution, which is described in the next
section. The most important ways of individual representation in GP and their variants are
overviewed by Poli et al. (2008, sec. 2.1, ch. 6 (tree-based), ch. 7 (linear and graph-based)).

14

simply designed operators could easily render the program syntactically in-
valid. The operators are applied randomly, based on the given probabilities,
on the selected individuals. Crossover, alternatively called recombination,
combines two individuals by exchanging their parts, and produces one or
two offspring. Mutation modifies a single individual, often by replacing a
small part of it by random data or by negating a bit. Operators may either
be mutually exclusive, or independent, mutation may, or may not, be lim-
ited to one application per individual. In case the crossover does not occur,
individuals are simply copied over to the new generation.3 When designing
the operators, one of the aims is to produce valid programs.

The whole process of evolution in GP can be described with the following
pseudocode for:

– n generations,
– p individuals in a population,
– R, a random number generator,
– px, pm, probabilities of crossover and mutation.

Evolution(n, p,R, px, pm)
1 P0 ← Initialise-Population(R, p)

� array of individuals indexed 0 . . p− 1
2 for i← 0 to n− 1 � or until a fit enough individual is found
3 do Fi ← Evaluate-Fitness(Pi)

� array of fitness values of all individuals
4 F ′i ← Scale-Fitness(Fi) � array of scaled fitness values
5 Pi+1 ← empty array
6 for j ← 0 to p/2− 1
7 do I ← Select(R,F ′i , Pi)
8 J ← Select(R,F ′i , Pi)
9

(
Pi+1[2j + 0], Pi+1[2j + 1]

)
← Crossover(R, px, I, J)

10 for j ← 0 to p− 1
11 do Mutation(R, pm, Pi[j])

� and possibly apply other operators
12 return the fittest individual based on F and P

This code is very close to how actual implementations of core algorithms for
GP look like. Variations of this algorithm employ additional operators, apply
them in a different order, or regard them as mutually exclusive. Algorithms with
more significant differences have also been designed, and are referred to with
special names such as steady-state algorithm, as opposed to simple or generational
(see Section 2.6.6).

As the methods of genetic programming are largely independent of the applic-
ation, several libraries and environments for general genetic programming have
been developed. They usually support several different evolutionary algorithms
without any clear separation. To use them for a particular purpose, one has

3This default operator is sometimes confusingly called reproduction (foremost in Koza, 1992).
Because it may suggest sexual reproduction, its exact opposite, I intentionally avoided this
name.

15

to set up a specific algorithm and adjust its parameters, among others operator
probabilities, and if needed, the specific way operators are performed, the mech-
anisms and parameters of selection, size of the individuals, size of the population,
number of generations or the desired value of fitness, and most importantly, the
fitness function. The function Evaluate-Fitness in the above pseudocode will
call the fitness function for each individual and transform (scale) the values if
needed. When implementing an application, one also has to design the structure
of individuals and decide how they should be translated into a program.

There is no single most appropriate way to perform selection, the operators or
initialisation of individuals, and there are no universal values for the quantitative
parameters. Different applications can benefit from different approaches. It would
also be misleading to expect every technique to be derived from genetic processes
in nature, which are not yet fully understood and do not translate directly to
the computer environment. While nature can inspire elegant algorithms, as we
will see later, it is usually better to think of the methods used in GP more
pragmatically as heuristics.

Genetic programming is described in more details and focus on practical im-
plications by Poli et al. (2008).

2.2 Fitness, a broader view
Although the notion of a fitness measure is not peculiar to genetic programming,
much less to grammatical evolution, a good understanding of it is essential both
for implementing any evolutionary algorithm and for using it efficiently in an
application. The fitness plays a pivotal role in evolutionary algorithms, it is a
link between a particular application and the algorithm.

We have said that fitness values are numerical values from a certain range,
associated with an ordering. Most general GP literature jumps directly from the
natural concept of fitness to the concept of fitness as a numerical output of a
fitness function (Koza, 1992; Banzhaf et al., 1998; O’Neill and Ryan, 2003; Poli
et al., 2008). The distinction between the two, which is important to realise, is
best worded by Goldberg (1989, p. 76):

All this monkeying about with objective functions should arouse sus-
picion about the underlying relationship between objective functions
and fitness functions.4 In nature, fitness (the number of offspring that
survive to reproduction) is a tautology. Large numbers of offspring
survive because they are fit, and they are fit because large numbers
of offspring survive. Survival in natural populations is the ultimate
and only taskmaster of any import. By contradistinction, in genetic
algorithm work we have the opportunity and perhaps the duty to reg-
ulate the level of competition among members of the population to
achieve the interim and ultimate algorithm performance we desire.

4For Goldberg, objective function means raw, unscaled fitness function, while fitness function
means scaled fitness function. This may be a more meaningful choice of terminology than ours,
but uncommon in genetic programming.

16

This is precisely what we do when we perform scaling.5

It is indeed better to think of the raw fitness as of an objective function that
has certain properties:

• It should be continuous (also used in this sense by Banzhaf et al. (1998)),
which means that it should provide a gradient leading to the right solution.
One should avoid fitness functions based on binary conditions, which leave
“gaps” between values (as noted by Poli et al., 2008, sec. 13.8). When
implementing the fitness function, precision is much less important than
continuity.

• Its output values have a particular ordering: In standard ordering higher
values are better, in reverse ordering lower values are better.6

• Its output values are from a particular range: It may have both the upper
and lower bound, one of them, or none: A fitness function based on an
error would have a range of [0,m) (where m is the maximum error possible)
or [0,∞), a fitness function for trading algorithms, allowing for both profit
and loss, would be unbounded.7

• There is an optimal mapping from the output values to fitness in the sense
of survival rate or selection probability.

Controlling and knowing these properties is vital to the construction of an
efficient algorithm with appropriate methods for scaling and selection. The first
property, continuity, is one to ensure, otherwise any evolutionary algorithm will
perform poorly. The next two properties, ordering and range, narrow our choice
of scaling and selection methods. The last one, the optimal mapping to selection
probability, poses the most difficulty. We typically do not know this optimal
mapping, but we should at least be aware that not all mappings are equal and
be prepared to experiment with them:

• Suppose that we compute our fitness as a value combined (using a sum
or otherwise) from several partial results. These are usually called fitness
cases. What weight should be assigned to each case? Additionally, if the
cases are errors of the candidate solution at several points, should we com-
bine their absolute values or their squares? These transformations already
take place in the fitness function, but they contribute to the mapping in
the same way as scaling does. (To square the errors is, in effect, to apply
a power law scaling to the fitness cases; see Section 2.6, p. 29.) It is also
worth note that a transformation applied to fitness cases, in contrast to the
final fitness value, can even change the relative order of fitness values.

5Goldberg was only concerned with various methods of fitness-proportional selection (see
footnote 13, p. 28), he did not consider the now mainstream variant of tournament selection,
which ignores scaling. I venture to say that if he did, he would speak of “scaling and selection”.

6I have chosen these two names to avoid using domain-specific classification, such as “profit”
or “error”, in general discussion. The terms maximisation and minimisation, while useful, apply
rather to the algorithm than to the fitness. The standard ordering is not to be confused with
Koza’s (1992) “standardised fitness”, which is incidentally defined to have reverse ordering.

7Every fitness function, when implemented, is implicitly bounded by the maximum float-
ing point value allowed by the implementation. Higher values are usually truncated to that
maximum.

17

• Suppose that our raw fitness values have reverse ordering, while the selec-
tion method demands standard ordering. Mapping the values with simple
inversion (1/x), and thus reordering them, is certainly possible, but chances
are that it is not the optimal mapping. Compare its effect with Koza’s ad-
justed fitness (Section 2.6, p. 29), which was already designed to magnify
differences between values close to zero. Do we really want to exaggerate
differences between very small values that much at the expense of differences
in the rest of the spectrum?

• Suppose that we use tournament selection (Section 2.6, p. 28), a method
described as “alternative” by Koza (1992), but which, according to Banzhaf
et al. (1998) six years later, “has recently become a mainstream method for
selection.” They attribute that to the possibilities it opens for parallelisms,
but Poli et al. (2008) highlight another important trait:

Note that tournament selection only looks at which program is
better than another. It does not need to know how much better.
This effectively automatically rescales fitness, so that the selection
pressure on the population remains constant. [. . .] Since tour-
nament selection is easy to implement and provides automatic
fitness rescaling, it is commonly used in GP.

Tournament selection can be used easily with any range and ordering of
fitness values and it does automatically rescale the fitness, to be sure, but
there is no guarantee that it does so in an optimal way. The selection
pressure is a good guide for the choice of scaling and selection, but it is not
the only measure of their quality. Note that both tournaments of different
sizes and Goldberg’s linear scaling (Section 2.6, p. 29) in conjunction with
fitness-proportional selection are designed to maintain selection pressure. If
they gave equivalent results in all applications, tournament selection with
tournaments of size of 2 without any scaling would be universally adopted,
as it is the least resource intensive one.

Scaling methods and selection schemes should be applied carefully. Results of
the algorithm can often be improved by experimenting with them. One should
not forget that to apply no transformation or an innocent-looking formula (1/x
or x2) is also a choice of mapping from raw fitness to selection probability. This
applies both to scaling and to transformation done inside the fitness function.

2.3 Genotype and phenotype
Until now we have assumed either that individuals are equivalent to programs
they represent, or that they are somehow automatically translated before exe-
cution. In genetic programming this translation process is usually called simply
mapping, or in reference to the analogous process in genetics, genotype-phenotype
mapping. Genotype means the actual genetic information, while phenotype is
defined by the characteristics observable from interaction with the environment.
The individual representation format (genotype), the program language (pheno-
type), the operators, and the mapping have to be designed and implemented with

18

respect to each other, and have to form a coherent whole. In genetic program-
ming a tree-based representation is the most often used one (and traditionally
mapped to Lisp).8

Tree-based representation naturally expresses syntax trees of programs. It is
suitable chiefly for languages with automatic garbage collection and it may not be
efficient enough due to increased demands on storage and memory management.
In some applications the problems can be remedied by using GP functions with
the same number and type of arguments and representing trees linearly. (See
footnote 2 on page 14 for terminology. The efficiency issues are discussed by Poli
et al. (2008, p. 10).) All this along with the desire to produce syntactically valid
and executable programs also has to be taken into account when designing the
operators.

From the practical point of view this approach places additional burden not
only on the GP environment developer, but also on the application developers,
who need to take special considerations when choosing a language used for the
solutions, and then adjust the mapping and operators accordingly. The use of
trees for individual representation also lacks a clear genotype-phenotype distinc-
tion, which is present in living organisms and is fundamental to the theory of
genetics (see for instance Lewontin, 2008).

2.4 Grammatical evolution
Grammatical evolution (GE) is an approach that builds on genetic programming.9
It facilitates the genotype-phenotype mapping of individuals, and consequently
the design of their structure, regardless of application. It also brings other benefits
“for free”, such as validity of programs being independent of operator implement-
ation.

This variant of genetic programming, which is supposedly closer to the natural
process, has been described in Grammatical Evolution by Michael O’Neill and
Conor Ryan (O’Neill and Ryan, 2003), which is based on O’Neill’s earlier PhD
thesis. As of this writing this is the most thorough work published on the subject.
As the authors note (O’Neill and Ryan, 2003, p. 34), there have been several other
attempts to use grammars with GP. In this case the word grammatical refers to
the use of a formal grammar in the mapping process, more specifically a context-
free grammar specified in Backus-Naur form (BNF).

The genotype is simply represented by a string of integer values. In analogy
to the DNA helix and nucleobase triplets, the string is often called chromosome,

8The most important work on GP to use Lisp is John Koza’s Genetic Programming. Koza
(1992, sec. 4.3) gives several reasons for choosing Lisp are given, all of which derive either from
the straightforward correspondence between program and data in Lisp and their parse trees,
or from Lisp’s relative ease of use and efficiency (on a Lisp machine) at the time. While the
performance and ease of use reasons may not apply today, the correspondence between the parse
tree and the program can still be a motivation to use Lisp for pure tree-based GP. Compare
this to grammatical evolution described in the next section.

9This is also the stance of O’Neill and Ryan (2003). They, however, use the term evolution-
ary automatic programming to refer to GP: “We feel that the use of the term Evolutionary
Automatic Programming, instead of GP with its various interpretations, is preferable [. . .]” I
opted for the more widely used term genetic programming (Banzhaf et al., 1998; Poli et al.,
2008).

19

and the values it consists of are called codons. Codons consist of a fixed number
of bits. The mapping to phenotype, which can be seen as an analogy to the
process of genetic translation, proceeds by deriving a string as outlined below
in the pseudocode for Derivation-Using-Codons. The procedure accepts the
following parameters:

– G, a context-free grammar in BNF. Note that BNF ensures that there is a
non-empty ordered list of rewriting rules for each nonterminal.

– S, a nonterminal to start deriving from. The start nonterminal of G should
be passed in the initial call.

– C, a string of codons to be mapped. Note that it is passed by reference and
the recursive calls will sequentially consume its codons using the procedure Pop.

Derivation-Using-Codons(G,S,C)
1 P ← array of rules for the nonterminal S in G indexed from zero
2 n← length[P]
3 if n = 1 � only one rule (no choice necessary)
4 then r ← 0
5 elseif length[C] > 0 � choice necessary, enough codons
6 then r ← Pop(C) mod n
7 else error “Out of codons” � or wrap C, more on that later
8 s← string of symbols at the right-hand side of the rule P [r]
9 t← λ
10 foreach A← symbols of s sequentially
11 do if A is terminal
12 then t← t . A
13 else t← t .Derivation-Using-Codons(G,A,C)
14 return t

This way we have achieved a convenient simplification. It is sufficient to
describe valid programs in BNF without further specification of structure and
interpretation of individuals. Operators on the chromosome strings can be imple-
mented in a straightforward way completely independent of phenotype. However,
several new problems seem to have arisen:

• Some of the individuals will still be invalid (when line 7 is reached.)

• As every codon is interpreted modulo n, where n is the number of rules for
the current nonterminal (see line 6), and it is interpreted at most once, the
information contained in a codon is never fully used.

• Additionally, the derivation is often completed before the codons are ex-
hausted, which means that part of the genotype does not have any effect.

Grammatical evolution solves or justifies the supposed problems quite easily:

• When the end of the chromosome is reached, the process continues from its
start, as if the chromosome was circular instead of linear. This process is
dubbed wrapping (O’Neill and Ryan, 2003). Only a certain finite number of
such wrappings is allowed. Nevertheless, the number of invalid individuals
is reduced (O’Neill and Ryan, 2003, sec. 6.2).

20

• In addition to that, wrapping makes it possible for codons to be interpreted
more than once with respect to different sets of rules using different parts
of the information contained in a codon.

• The unused codons, as well as different parts of the information contained
in the used ones, can actually come into effect in later generations after
genetic operators are applied.

A supportive argument for wrapping and using different parts of the genome
under different circumstances is their similarity to genetic phenomena: wrapping
is similar to gene overlapping, and the latter two cases can be seen as instances
of genetic code degeneracy. Wrapping can be controlled by changing the number
of wrapping events allowed per mapping (it can be disabled entirely). Degener-
acy can be controlled to some extent by changing the codon size (the minimum
number of bits per codon is determined by the highest number of rules for a
nonterminal in the grammar). O’Neill and Ryan (2003, p. 72) recommends 8-bit
codons, and employs them in all examples, which have up to four rules for one
nonterminal. They, however, “do not expect this codon size to be the optimal
across all problems.”

More information, including parallels with biological processes and evidence
that both wrapping and degeneracy can improve performance, can be found in
(O’Neill and Ryan, 2003).

2.5 GE example: symbolic regression
Let’s take look at how a GE fitness function may look like and how it would
evaluate several example individuals for a specific problem: symbolic regression.
Symbolic regression tries to find a function represented by an expression (thus
being symbolic) to fit a given set of target function values at specified points (thus
being a regression).

This is a canonical example of a GP problem because its fitness function can
be implemented easily, for instance using a sum of absolute errors at the specified
points, and it can provide a gradient leading to the right solution.

In a real-world setting the target values would be determined experimentally
and the solution would be expected to match the values within a specified er-
ror range; fitness could also partially depend on the expression length to avoid
overfitting.

For our example we will use target values computed from an actual polynomial
x5 + x4 + x3 + x2 + x at 20 points evenly distributed over the range of [−1, 1].

More general information about symbolic regression and genetic programming
can be found in (Koza, 1992).

2.5.1 Grammar
In the following examples we will compose grammars producing expressions with
a C-like syntax, which are valid in several programming languages (C, Java, Lua
and others). Pretending that we do not know that the target function involves
only addition and multiplication, we could start with a grammar providing for
all sorts of operations and functions (see Listing 2.1).

21

<expr> ::= <expr> <op> <expr>
| (<expr> <op> <expr>)
| <pre-op> (<expr>)
| <var>

<op> ::= + | - | / | *
<pre-op> ::= sin | cos | exp | log
<var> ::= x | 1.0

Listing 2.1: Example grammar rules in BNF for symbolic regression (many operations
and functions).

This specification of rules in BNF also implicitly defines nonterminal symbols
expr, op, pre-op, var, and terminal symbols +, -, /, *, sin, . . . , 1.0. By con-
vention the first nonterminal, in this case expr, is the start nonterminal. The sets
of nonterminals, terminals, production rules, and the start nonterminal together
define a grammar. As left-hand sides of BNF rules can only be nonterminals, it
is a context-free grammar.

At this point we should note that this grammar was composed somewhat ar-
bitrarily. We could experiment with different ways of constructing the expression
(for instance by omitting the rule <expr> → <expr> <op> <expr>). We could
choose different functions and operations based on what we expect in our problem
space. Another important decision is whether to include the so-called ephemeral
constants. In this case we have chosen to include only 1.0, letting other constants
evolve spontaneously. Instead we could either explicitly include more constants,
or leave them out completely (1.0 can evolve as x/x). (Dempsey et al., 2009
devote two chapters to evolution of constants in GE.)

The choice of grammar both delimits the search space (without exponentiation
or the exp function we cannot find a function involving exponential dependency)
and favours certain solutions (the grammar specified in Listing 2.1 gives arith-
metic operators in op twice the probability of functions in pre-op, note the two
occurrences of <op>).

Having realised how large the search space, and consequently the resources
needed for the search, would be for a grammar with so many functions, we will
first try our luck with a simpler grammar (see Listing 2.2).

<expr> ::= (<expr> <op> <expr>) | <var>
<op> ::= + | - | *
<var> ::= x | 1.0

Listing 2.2: Example grammar rules in BNF for symbolic regression (simplified ver-
sion).

2.5.2 Fitness function
Our fitness function will be computed as a sum of absolute errors (differences
from the target values) at the given 20 points. As a result, zero fitness is the best
possible, the larger the value the worse: the values are nonnegative with reverse

22

ordering. We will let the evolution iterate until either a small enough fitness is
reached10 or a certain number of generation has evolved.

The implementation will involve evaluation of expressions. The grammar
already guarantees that an expression is syntactically valid, but if we have chosen
the first more complex grammar, the expression might fail at runtime because of
division by zero or invalid argument for the log function, depending on how these
conditions are dealt with in our programming language of choice. In any case it is
necessary to handle the failures. Let’s decide that we search for a function defined
at all tested points, and thus assign the worst fitness possible if evaluation fails
or the result is undefined.

Let’s summarise the constants and procedures we will use in the fitness func-
tion:

– G is the context-free grammar in BNF as specified above.
– S is its start symbol (expr).
– X is an array of the 20 points (−1.0,−1.1, . . . , 1.9) where the function will

be evaluated.
– Y is an array of the target (x5 + x4 + x3 + x2 + x) values at points X.
– fmax is the maximum representable fitness value (the worst possible one).
– Derivation-Using-Codons is based on the function defined on page 20

extended with the possibility of wrapping. It may fail with an error when the
codon string needs to be wrapped too many times.

– Evaluate-Expression(e, x) is a function that evaluates the expression
string e (using a compiler, an interpreter or a virtual machine) at point x (that
is with x = x). It may fail with an arithmetic error as described above.

Symbolic-Regression-Fitness(individual)
1 try
2 expr ← Derivation-Using-Codons(G,S, codons[individual])
3 catch “Too many wrappings”
4 return fmax
5 e← 0
6 for i← 0 to length[X]
7 do try
8 e← e+ |Evaluate-Expression(expr , X[i])− Y [i]|
9 catch “Arithmetic error”
10 return fmax
11 return e

This is a complete fitness function, which could be called from Evaluate-
Fitness in our pseudocode for Evolution on page 15.

10Expecting the fitness to reach zero exactly is not a reasonable requirement, even in this
artificial example where the target values are precomputed. Due to imprecise floating point
computations, two expressions that are mathematically equivalent in terms of value can give
slightly different results. For instance (x + x3)(x + x2) + x is certainly equivalent to x5 + x4 +
x3 + x2 + x but it might not give the same numerical result.

23

2.5.3 Evaluation of example individuals
Suppose that the following three individuals A, B, and C are passed to our fitness
function by the evolution algorithm. Evaluation of each one will start by deriving
the phenotype string using the codons of their chromosome. It is done according
to the grammar defined in Listing 2.2 starting from the nonterminal <expr>.

• Individual A: codons[A] = (10 11 99 62 33 22). Derivation proceeds as
shown in Figure 2.1. Every codon is used exactly once. The result is a valid
expression 1 * x. The expression is evaluated as specified in the second
part of Symbolic-Regression-Fitness, resulting in a fitness value of
approximately 8.767.

<expr>

<expr> <op> <expr>

<var>

x

*<var>

1

codons: 10 11 99 62 33 22
n ← 2; r ← 10 mod 2 = 0

codons: 10 11 99 62 33 22
n ← 2; r ← 11 mod 2 = 1

codons: 10 11 99 62 33 22
n ← 2; r ← 99 mod 2 = 1

codons: 10 11 99 62 33 22
n ← 3; r ← 62 mod 3 = 2

codons: 10 11 99 62 33 22
n ← 2; r ← 33 mod 2 = 1

codons: 10 11 99 62 33 22
n ← 2; r ← 22 mod 2 = 0

Figure 2.1: Individual A: no wrapping occurs. (Terminals ‘(’ and ‘)’ left out for
clarity.)

• Individual B: codons[B] = (42 28 10). Derivation proceeds as shown in
Figure 2.2. As every codon mod 2 = 0, the same rule is applied over and
over without reaching any terminals. After three applications of the rule
<expr>→ (<expr> <op> <expr>), wrapping is applied, resulting in an
infinite loop. Regardless of the maximum number of wrappings allowed,
this individual is invalid, and it is assigned the worst possible fitness value,
fmax.

• Individual C: codons[C] = (16 21 22 24 10 11 80 32 60 59 13). Derivation
proceeds as shown in Figure 2.3. The chromosome is exhausted before
terminals are reached in all branches of the derivation tree. After one
wrapping the derivation is successfully finished. Note that the first codon is
interpreted modulo 3 instead of modulo 2. The result is a valid expression (x
+ (x * (1 - x)). The expression is evaluated as specified in the second
part of Symbolic-Regression-Fitness, resulting in a fitness value of
approximately 17.009.

The evaluated individuals have been assigned fitness values

f(A) ≈ 8.767, f(B) = fmax, f(C) ≈ 17.009.
What does that mean for their chances of survival and reproduction? The

exact answer of course depends on the fitness scaling and selection scheme, some
of which will be discussed in the following section. A common scenario would be:

24

(infinite loop)

<expr>

<expr> <op> <expr>

<expr> <op> <expr>

<expr>

…

<op> <expr>

codons: 42 28 10
n ← 2; r ← 42 mod 2 = 0

codons: 42 28 10
n ← 2; r ← 28 mod 2 = 0

codons: 42 28 10
n ← 2; r ← 10 mod 2 = 0

codons: 42 28 10
n ← 2; r ← 42 mod 2 = 0

(wrapping)

Figure 2.2: Individual B: wrapping results in an infinite loop.

– roulette-wheel selection, which selects individual x with probability propor-
tional to its fitness f ′(x),

– Koza’s adjusted fitness scaling f ′(x) = 1/(1 + f(x)), which can be used to
transform our error-based fitness values to values suitable for the roulette-wheel
selection.

In that case the probabilities of selection would be proportional to scaled
fitness values:

f ′(A) = 1/(1 + f(A)) ≈ 1/(1 + 8.767) ≈ 0.102,
f ′(B) = 1/(1 + f(B)) = 1/(1 + fmax) ≈ 0.000,
f ′(C) = 1/(1 + f(C)) ≈ 1/(1 + 17.009) ≈ 0.056.

Thus the individual A would have about twice the chance of individual C to
survive and breed, while the invalid individual B would almost never be selected.

2.6 Search algorithm elements

Section 2.1 presented a basic search algorithm called simple or generational. This
algorithm was based on smaller building blocks: initialisation, fitness evaluation,
selection, and operators, which can be implemented in various ways. Additionally
even the algorithm itself can be altered, usually to form new generations in a
different way, or not to use generations at all.

As follows from the above description of grammatical evolution, any imple-
mentation that can operate on variable-length integer strings can be used for
GE. It is even possible to apply GE to integer vectors, that is fixed-length in-
teger strings. This, however, would impair the algorithm’s ability to evolve a

25

(w
rapping)

<expr>

<expr>

<var>

<op>

+

x

<op>
<expr>

*
<var>

x

<expr>
<op>

<expr>

<var>

x

-
<var>

1

codons: 16 21 22 …
n ←

 2; r ←
 16 m

od 2 =
 0

codons: 21 22 24 …
n ←

 2; r ←
 21 m

od 2 =
 1

codons: 22 24 10 …
n ←

 2; r ←
 22 m

od 2 =
 0

24
10

1180

32
60

5913

<expr>

<expr>
codons: 16 21 22 …

n ←
 3; r ←

 16 m
od 3 =

 1

codons: 21 22 24 …
n ←

 2; r ←
 21 m

od 2 =
 1

codons: 22 24 10 …
n ←

 2; r ←
 22 m

od 2 =
 0

F
igure

2.3:
Individual

C
:
w
rapping

results
in

reinterpretation.
(Term

inals
‘(’and

‘)’left
out

for
clarity.)

suitable string length on its own.11 The following paragraphs describe several
variants of the algorithm elements commonly used for GE.

2.6.1 Initialisation
Two methods to create the initial population exist:

Random initialisation produces a population of individuals with chromosome
lengths evenly distributed over a certain range and chromosomes filled with
random values. This very simple method does not take into account any
properties of the grammar used for evaluation. Random initialisation can
also be used for fixed-length genotype, in which case the chromosome length
is constant.

Sensible initialisation (described in more details by O’Neill and Ryan, 2003,
sec. 8.8), on the other hand, employs the grammar that is used for the map-
ping process to produce individuals with certain properties. It is modelled
after the ramped half-and-half technique devised by Koza for tree-based GP
(Koza, 1992, sec. 6.2, app. C) and its aim is to produce a wide variety of
derivation tree shapes and sizes.

2.6.2 Fitness evaluation
Fitness evaluation is entirely application dependent, except of course for the use
of genotype-phenotype mapping with a grammar. Section 2.5 gives an example
of fitness evaluation in GE.

2.6.3 Selection
All mainstream methods of selection are based solely on the fitness values, any
of them are therefore applicable to grammatical evolution. We will describe the
most common two of them:

Roulette-wheel selection allocates each individual a section of a hypothet-
ical roulette wheel proportional to its fitness. An individual is selected by
spinning the wheel.12

When the process is repeated, a previously selected individual can be se-
lected again, it is, therefore, a selection with replacement. Fitness values
must be non-negative, finite and high values must indicate high fitness. For
this method, not only the relative order, but also the relative magnitude of
the fitness values is very important. For instance fitness values constrained

11In particular, if the sought solution involved more applications of rules for nonterminals
then there were codons in the vector, wrapping would be the only means to find that solution.
As shown in an experiment in (O’Neill and Ryan, 2003), wrapping is valuable only for some
applications, and if it is not, it can cause the chromosome length to actually increase even more
(O’Neill and Ryan, 2003, sec. 6.2). Therefore, it should not be relied on to produce phenotype
of variable complexity from fixed-length genotype.

12If we assume individuals numbered from 1 to n, and a distribution defined by a probability
mass function f(i) = [fitness of individual i], then the roulette-wheel selection can equivalently
be defined as generation of a random variate of that distribution.

27

to a small range with regard to their average value, will result in virtually
the same probabilities of being selected, and are therefore unsuitable for
this method. Alternative name for this method is stochastic sampling with
replacement (Goldberg, 1989, Goldberg himself, however, prefers to call it
roulette wheel).13

Tournament selection picks a random group of t individuals from the popu-
lation, and then selects the best one of the group. Unless stated otherwise
the method is usually understood as being without replacement within a
given tournament. This ensures that there are t distinct competitors as
corresponds to the natural notion of a tournament (Koza, 1992; Banzhaf
et al., 1998).14 Many variants of tournaments exist, but there is no fixed
terminology for them: being “with replacement” may indicate replacement
within a tournament or among tournaments, being “stochastic” may apply
to selection of the competitors or to the selection of the winner of tourna-
ment. Unless the competitors for the tournament are themselves selected
with a more elaborate method, the exact values of fitness do not matter
for tournament selection, only how they compare to each other within the
tournament.

2.6.4 Fitness scaling
Although fitness scaling occurs before selection, we discuss the methods in reverse
order to reflect that fitness scaling is an optional complement to selection and
should be always chosen in conjunction with a specific selection algorithm. When
one or more scaling transformations are applied, the selection is based on the final
scaled values.

Any fitness scaling methods can be used with GE, the only notable exception
that would require modifications is fitness sharing:

Reversal, the simplest transformation, is used to reverse the ordering by sub-
tracting the raw fitness value from a constant:

f ′ =
{
c− f if f ≥ C
0 otherwise

The constant c is usually chosen so that f ≥ c, a commonly used value is
the maximum fitness in the current generation. This scaling is most useful
in two cases:
– fitness-proportional selection is being used, but our fitness values repres-
ent cost, distance, or error rather than profit or utility (Goldberg, 1989);

13While some authors (Koza, 1992; Banzhaf et al., 1998) also use the term fitness-proportional
selection for roulette-wheel selection, I reserve it to its general meaning: any selection method
that is fitness-proportional. Goldberg (1989, p. 121) lists five of them, and adds a variant of
tournament (see below) that uses a fitness-proportional method for picking competitors.

14Surprisingly Koza’s own sample code from the cited book picks the competitors with re-
placement. This seems to be more common in implementations, probably due to the natural
laziness of programmers.

28

– our fitness values are in the correct order, but we want to apply a different
scaling that changes the order.

Koza’s adjusted fitness is designed to “exaggerate the importance of small
differences in the [input] value as [it] approaches 0 (as often occurs on later
generations of a run)” (Koza, 1992, sec. 6.3.3). It applies the following
formula to nonnegative values with reverse ordering to get a nonnegative
values with standard ordering:

f ′ = 1
1 + f

Koza uses this transformation throughout his book. If necessary a reversal,
as defined above, is applied beforehand to change the ordering.

Goldberg’s linear scaling with factor k is a simple linear formula with coeffi-
cients a and b such that using roulette wheel selection, an average individual
gets one expected copy in the new population and the best individual gets
k copies:

f ′ = af + b

Computation of the coefficients and other details are described in Gold-
berg’s Genetic Algorithms (Goldberg, 1989, ch. 3: Fitness Scaling, ch 4:
Scaling Mechanisms). Suggested values for k are 1.2 to 2 for populations
of 50 to 100 individuals. If the coefficient k would cause some scaled fit-
ness values in the current population to be negative, the highest possible
coefficient that would not do so is used instead.

Other scaling methods include: sigma truncation, used to avoid negative val-
ues in linear scaling; power law scaling, which uses the formula f ′ = fα; and
fitness sharing, which allows for the development of niches within the population
(Goldberg, 1989). While too complex to be discussed here in greater detail, fit-
ness sharing deserves special attention for being dependent not only on the raw
fitness values, but also on genotype or phenotype. Its application to grammatical
evolution would therefore require an adaptation.

2.6.5 Operators
In addition to the two traditional operators, crossover and mutation, duplication
has been proposed for grammatical evolution, but has not gained widespread use.
The operators for GE are commonly implemented as follows:

One-point crossover, when applied to a pair of variable-length individuals, se-
lects one point on each of them at random, and exchanges segments starting
at these points. The crossover occurs on a codon boundary and the spe-
cified probability is used to decide whether the operator is applied to a
given pair of individuals. When applied to fixed-length genotype, the cros-
sover occurs at the same point at both individuals (Goldberg, 1989; Koza,
1992, sec. 6.4.2) to maintain the same length. Other types of crossover are
described and evaluated by O’Neill and Ryan (2003) with the conclusion
that the one-point crossover has superior results.

29

Bit-level mutation goes through each bit of each individual and inverts it with
a specified probability. This type of mutation is the only considered by
O’Neill and Ryan (2003). It should be noted that the effective mutation
rate is affected by degeneracy (which is determined by the number of bits
per codon, length of the chromosomes, structure of the applied grammar
and wrapping). It does not make sense to directly compare the values of
mutation probability between GE and GP, or even between different GE
setups. This version of mutation is one of the most common mutation
methods in evolutionary algorithms, it has been described for instance by
Goldberg (1989).

Codon-level mutation goes through each codon of each individual and sets it
to a random value with a specified probability. This mutation operator has
been adopted in GEVA (Section 3.2) without any comments on its benefits
or drawbacks compared to the bit-level variant. An obvious advantage is
that it has lower computation time: it requires at most two random number
generator calls per codon (one to decide whether to mutate, the other to
generate a random codon value), while a naïve implementation of the bit-
level mutation requires one call per bit. (In Section 5.4 we will show how
to overcome this disadvantage.)

Duplication “involves randomly selecting a number of codons to duplicate and
the starting position of the first codon in this set. The duplicated codons are
placed at the penultimate codon position at the end of the chromosome so
as to facilitate their incorporation into the phenotype. We do this because if
the the [sic] individual produced a completely mapped program after read-
ing the last codon, and we placed duplicated codons after this point, they
will [sic] not be used by this individual, until some other genetic operator
allowed them to be switched on.” (Citing O’Neill and Ryan, 2003.) This
operator was proposed for use in GE by O’Neill and Ryan (2003), where it
is applied it to all examples, although only with a 1% probability. A more
accurate description as well as an analysis of its effects is missing. Neither
of the two major implementations (ligGE and GEVA, see Chapter 3) in-
cludes it. It is also omitted from O’Neill’s later work on GE (Dempsey
et al., 2009). As follows from its definitions, duplication is, in fact, a special
mutation operator.

2.6.6 Variations to the algorithm
The basic search algorithm, called simple or generational, presented in Section 2.1
creates a new generation using selection an operators in each iteration. As result
of the random nature of its building blocks described above, it may happen that
the best individuals from one generation do not make it to the other, while the less
fit, or even invalid, individuals may survive. Two variations of the algorithm who
remove this possible drawback are commonly used with grammatical evolution.
Their descriptions are based on comparison with the simple algorithm defined in
the pseudocode for Evolution on page 15.

Steady-state evolution with replacement r (0 < r ≤ 1), an alternative to
generational evolution, does the following in each iteration:

30

1. A temporary population Q of br · pc individuals is produced in the
same way as a new population of p individuals is produced by the
generational algorithm.

2. The temporary population Q and the old population Pi are merged
into a new population Pi+1.

3. The br · pc worst individuals are deleted from the merged population
Pi+1.

This is most likely what O’Neill and Ryan (2003) mean by “steady state
replacement strategy”. Although the authors did not describe any such
strategy, the words “Steady State” occur in the parameters of all four of
their examples and at least some of the experiments. Only the following
two remarks on the application of the steady-state algorithm to GE can be
found in the book:
– Page 67 on the examples: “The effective removal of the [invalid] indi-
viduals could be attributed [particularly to] the steady state replacement
strategy. [. . .] The effective operation of GE is not dependent, however, on
using a steady state replacement strategy.”
– Page 91 on the experiments with crossover: “[The one-point crossover]
produces individuals that are capable of being propagated to successive
generations, given the steady state replacement strategy.”
Several different algorithms, most of which preserve a certain number of
the best individuals from the previous generation, are also referred to as
steady-state. This particular version is the most straightforward and is
called “GE style” by the authors of libGE (Nicolau and Slattery, 2006), an
implementation discussed in Chapter 3.

Generational evolution with elitism does the following in each iteration for
elite size e (1 ≤ e < p, the population size):

1. After the fitness of the old population Pi is evaluated, the e best indi-
viduals of Pi are copied to a temporary population E, the elite.

2. A new generation Pi+1 is created exactly as in the simple, non-elitist
algorithm.

3. The elite E is merged into Pi+1.
4. The e worst individuals are deleted from the merged population Pi+1.

Slight modifications can be made, for instance: the elite may not be allowed
to contain more than one copy of the same individual, or only those of the
elite E better than the best one of the population Pi+1 are merged into
Pi+1.

31

Chapter 3

Existing Implementations

A GE environment can be built on top of, or as a module of, an existing envir-
onment for evolutionary algorithms. This is especially useful for implementing a
proof of concept because:

– it spares the developers from reimplementing basic evolutionary algorithms
and structures,

– it demonstrates that the principle of grammatical evolution is independent
of a specific search algorithm (even algorithms other than genetic can hypothet-
ically be used),

– additionally, it can contribute to a cleaner, more modular design.
However, the GE environment will typically use only a fraction of the under-

lying infrastructure, and the result will be perceived as clumsy by a user or an
application developer. This path has been taken by the authors of libGE, most
probably for the reasons cited above (as suggested by Nicolau and Slattery, 2006,
sect 2.1).

This chapter will review the major implementations of GE that are publicly
available. Unless specified otherwise, names for methods of initialisation, or se-
lection, and variants of operators, or algorithms in the following text are used as
defined in Section 2.6.

3.1 libGE
LibGE1 was developed by the Biocomputing and Developmental Systems group
(BDS) at University of Limerick by Miguel Nicolau and Darwin Slattery as a
first major publicly available implementation of grammatical evolution. As of
this writing it is still being advertised on BDS’s website2, but it has not been
updated since September 2006.

As its documentation states (Nicolau and Slattery, 2006), “libGE is a C++
library that implements the Grammatical Evolution mapping process.” The re-
latively small library is meant to be used in conjunction with a separate EA
environment.

1LibGE source code can be downloaded from http://bds.ul.ie/libGE/. The latest pub-
lished version is 0.26. Documentation for version 0.27alpha1 is available on the website and
appears identical to that contained in the 0.26 package.

2http://bds.ul.ie/ and http://www.grammaticalevolution.org/

32

http://bds.ul.ie/libGE/
http://bds.ul.ie/
http://www.grammaticalevolution.org/

SGA-C3, GALib4 and EO5 are the only EA engines tested with libGE. The
package includes three documented example applications with separate imple-
mentations for EO and GALib. Two applications are also implemented using
SGA-C, but the results are not compared with others due to the limited func-
tionality of SGA-C.

LibGE does not shield the application developer completely from interacting
with the search engine. He is expected to choose an engine and write his applic-
ation by modifying the examples, which comprise actual applications, glue code
and extensions to the respective engines.

Chromosome
Chromosome is a string of 8-bit codons, as recommended for simple grammars
(see Section 2.4, p. 21) by O’Neill and Ryan (2003). No provisions have been
made for changing the codon size.

Algorithm and selection
While libGE itself does not implement any evolutionary algorithm, the examples
provide setups for GALib and EO resulting in steady-state evolution with roulette
wheel selection. The examples and experiments do not use any other methods.

Initialisation
Both random and “sensible” initialisation is supported.

Operators
The examples include implementations of two simple operators, which are recom-
mended by O’Neill and Ryan (2003): one-point crossover and bit-level mutation.
Additionally, a slight variation of crossover, called effective crossover, limits the
point of crossover to codons actually used when deriving the phenotype. None of
the examples implements the duplication operator, which is also recommended
by O’Neill and Ryan (2003).

Evaluation
In GALib, fitness evaluation is performed by a set of C-style functions. In EO
it is performed by methods of an evaluator class. In either case the fitness func-
tion, or the evaluator, must be adapted to the chosen engine, and it is the fitness
function, which interfaces with the genotype-phenotype mapper implemented in
libGE. All three supported engines maximise fitness. In an example with reverse

3SGA-C is a C reimplementation of example code in David Goldberg’s Genetic Algorithms
(1989). Several versions circulate on the internet. The one used in libGE is available at
http://www.illigal.uiuc.edu/pub/src/simpleGA/C/.

4GALib: A C++ Library of Genetic Algorithm Components has a home page at http:
//lancet.mit.edu/ga/.

5The EO (Evolving Objects) library can be downloaded from http://eodev.sourceforge.
net/.

33

http://www.illigal.uiuc.edu/pub/src/simpleGA/C/
http://lancet.mit.edu/ga/
http://lancet.mit.edu/ga/
http://eodev.sourceforge.net/
http://eodev.sourceforge.net/

fitness ordering, the raw fitness is simply inverted (1/x). In both GALib and
EO, the application can, apart from setting fitness, set effective size of the gen-
otype (number of codons actually used in the derivation), guide the “sensible”
initialisation, and provide very basic support for printing individuals. This is
demonstrated in the examples.

Individuals of a population are evaluated one by one. If a compiled language
is used for the phenotype, it means that the compiler is invoked separately for
each individual.

Output
Output is limited to what is directly provided by GALib or EO, which means
that GE-specific statistics are not available.

Documentation
The documentation concerns chiefly practical questions, which arise from the need
to integrate libGE with a GP environment. Results of three example applications
in the two supported environments (GALib and EO) are briefly discussed.

Portability
LibGE has been developed in C++ under Linux and can be built using the GNU
toolchain (GCC, autoconf, automake). The library itself does not provide any
means for phenotype evaluation, but the examples use GCC, TinyCC, Lua, and
S-Lang.

3.2 GEVA
GEVA6 is being developed by Natural Computing Research & Applications Group
(NCRA) at University College Dublin. According to its documentation (O’Neill
et al., 2008): “It is an open source implementation of Grammatical Evolution
[. . .], which provides a search engine framework in addition to a simple GUI and
the genotype-phenotype mapper of GE.” While the mapper itself “draws upon
the design adopted in Miguel’s libGE C++ library,” this comprehensive approach
distinguishes GEVA from libGE.

Architecture
GEVA uses an abstraction for the evolutionary algorithm, citing from its docu-
mentation (O’Neill et al., 2008):

6GEVA source code is available at http://ncra.ucd.ie/Site/GEVA.html. Current version
is 1.1. A technical report (O’Neill et al., 2008), which “serves as an introduction to the GEVA
software providing guidelines on its installation and use,” is included both in the package and
available as a separate download. The report concerns the previous release (1.0), but according
to the changelog file, version 1.1 is only “a bug fix release which updates the code for the
Santa Fe Ant Trail example problem.” The package also contains JavaDoc-generated HTML
files, which are as of version 1.1 too terse to serve as a documentation.

34

http://ncra.ucd.ie/Site/GEVA.html

In GEVA algorithms are built by combining different modules into a
pipeline. A module is a self-contained algorithm building block, by
stacking modules an algorithm is created (You could create your entire
algorithm in one module, but that is not what GEVA is designed for).

An algorithm, such as simple or steady-state, is not written in a procedural
form (see pseudocode for Evolution on page 15), instead it is assembled like
a jigsaw by a series of assignments, constructor and accessor method calls. The
documentation does not provide any explanation of this design choice. If it was
only to make the code modular, it would be at the expense of clarity. My im-
pression is that it could be used to create a very interesting, and maybe effective,
graphical interface, but the current GUI, which is merely a form corresponding
to the command line options, does not reflect this.

Chromosome
Chromosome is a string of 32-bit codons, which introduces inadequate amount
of code degeneracy for any imaginable grammar (see Section 2.4, p. 21). While
there is no such explanation in the documentation or the source code, it may
be so that the impact of degeneracy on effective mutation rate is minimised by
the adoption of codon-level mutation. Further investigation would be needed to
understand all implications of this approach, which is significantly different from
the one presented and explained by O’Neill and Ryan (2003). No provisions have
been made in the source code to change the codon size.

Algorithm and selection
GEVA implements both simple and steady-state evolution, and supports elitism.
GEVA’s implementation of elitism works as outlined in Section 2.6.6, with the
following exceptions: (1) genotypic duplicates are removed from the elite, possibly
reducing the initial size e of the elite; (2) steps 3 and 4 are done in reverse order,
although the source code comments tell otherwise.

Allowed selection methods are roulette-wheel, tournament and user selection
through GUI. All examples use the tournament selection (or, in one case, the user
selection). The algorithm is minimising and the only permitted fitness ordering
is reverse. As the source code comments put it, “min fitness is the best fitness,”
and therefore the fitness values go through a mapping that “subtracts the fitness
from the fitness sum and divides by the fitness sum” before they are used for
the roulette-wheel selection. This makes roulette-wheel selection in GEVA unus-
able, as these implicitly scaled fitness values all fall in a narrow range, virtually
removing any significant fitness pressure.

While other methods of selection could be added easily (although precise
documentation is missing), fitness scaling is not supported at all.

Initialisation
Both random and “sensible” initialisation is supported. Random initialisation
supports only a fixed chromosome length instead of a range. The two methods
are implemented in the classes Operator.Operations.RandomInitialiser and

35

Operator.RampedFullGrowInitialiser. In command line options and config-
uration files, the random initialiser is identified just as Operator.Initialiser
(a skeleton class that is in fact used by both types of initialisers).

Operators
Crossover uses the standard one-point method, but mutation occurs at the codon
level. It is unclear why. Perhaps because it better fits the oversized codons (see
above), perhaps to save computation time (see Section 2.6.5). Neither bit-level
mutation nor duplication is implemented.

Evaluation
The fitness evaluation is performed by an evaluator class that implements the
FitnessFunction interface: a getFitness() method, which assigns fitness to a
single individual, and a canCache() method, which can be used to enable caching
of the results. (The caching is not documented, but it appears that fitness values
are cached in a hash table, where the phenotype strings are used as keys. Least
recently used entries are removed when the cache reaches a certain size.)

Two abstract classes that implement the interface are available: one evaluates
phenotype with JScheme (a dialect of Scheme), the other with Groovy (an OOP
language for the Java Platform) using the Bean Scripting Framework. Both of
them require the application developer to supply a single method, createCode(),
which accepts a phenotype string, and returns a program in the given language,
which in turn returns the final fitness value. As a result the whole fitness eval-
uation has to be implemented in the scripting languages used for phenotype
evaluation. (The evaluator can be also implemented from scratch and use the
JScheme, Groovy, or another interpreter as needed.)

Use
GEVA is designed to perform a single run of an evolutionary algorithm set up via
command line interface (CLI) or graphical user interface (GUI). The document-
ation lists command line options shown in Listing 3.1. The same options can
alternatively be set up in a configuration file or using GUI. An undocumented
option worth mentioning is -rng_seed, which can be used to set a seed for the
random number generator. Otherwise it is seeded with the current system time,
making it impossible to reproduce the results.

These options, although most of them are not described in more details in
the documentation, are easy to understand and are sufficient to configure the
algorithms implemented in GEVA. A technical detail worth mentioning is that
the -generation option, which according to the documentation, should set the
(maximum) “number of generations” (g, as used in this thesis, by Koza, 1992;
Banzhaf et al., 1998; and also by O’Neill and Ryan, 2003), actually sets the
maximum generation number (maxgen = g − 1, as used by Goldberg, 1989).
Generations are counted starting from zero as usual.

The option -stopWhenSolved does not work as expected in most cases, as
it depends on the fitness value reaching exactly zero (see the discussion in foot-
note 10 on page 23). For instance in the first three sets of runs of simple symbolic

36

-mutation_probability
-initialiser
-generations
-replacement_type
-generation_gap
-crossover_operation
-evaluate_elites
-userpick_size
-grammar_file
-grow_probability
-population_size
-output

-fitness_function
-max_wraps
-selection_operation
-crossover_probability
-mutation_operation
-max_depth
-elite_size
-word
-tournament_size
-fixed_point_crossover
-stopWhenSolved
-rng_seed (not documented)

Listing 3.1: GEVA options, as listed in the documentation and help.

regression presented in Section 8.2 the fitness value of zero was reached only in 2
cases out of the total 908, in which the solution was found.

Notably absent from the options are output settings. One can only choose
whether to save the output to a file or not.

Nonexistent options or options not used by the chosen algorithm elements
are silently ignored. Missing options are either supplied from the “hello world”
example, or cause an exception, usually uncaught. It does not pose problems
when using the GUI, which constraints the choice of parameters, but it is a
highly unreliable behaviour for a command line tool.

Output
GEVA is designed to perform one run of its evolutionary algorithm and pro-
gressively output basic statistical data about each generation. The generation
statistics are best fitness, average fitness, fitness variance, average chromosome
length, average number of used codons, average derivation tree depth, elapsed
time7, and number of invalid individuals. These statistics can be printed to
standard output, displayed as graph (when GUI is used) or logged to a file as
space-separated values (using the -output option). When finished it prints the
best individual’s phenotype string, fitness value, and total elapsed time to the
standard output. The graph in the GUI version is plotted on the fly to provide
visual feedback during the run, it can also be scaled and saved as a bitmap image.

No other statistics or output options are provided. It is impossible to retrieve
information about any individuals other than the best of run. GEVA also does
not provide any means for aggregating statistics from multiple runs.

Documentation
The documentation introduces GEVA through a series of task-oriented tutori-
als for application developers and users. It does not, however, document the

7GEVA only measures the elapsed time (based on the “wall clock time” as supplied by
System.currentTimeMillis()), as opposed to its consumed CPU time. The reported times
therefore cannot be used for benchmarking.

37

general design or the inner workings of GEVA. It does not state clearly what
algorithms and methods are used, except for the genotype-phenotype mapping
using a grammar explained in the introduction.

Portability
GEVA is written in Java and does not directly depend on any other software,
except for several open-source Java libraries, which are included with GEVA.

3.3 Other implementations
Michael O’Neill maintains a list of grammatical evolution software8. GEVA
and libGE are followed by jGE9, PyNeurGen10, and DRP11. According to their
web sites, DRP implements a new generative programming technique, a cross
between grammatical evolution and genetic programming, and PyNeurGen com-
bines grammatical evolution with neural networks. While interesting, they are not
general tools for GE. The jGE project on the other hand implements grammatical
evolution in a minimalistic and clean way. The source code is well documented
using JavaDoc. Unfortunately it is the only documentation provided. There has
not been any update since the release of version 1.0, and the web site was last
updated in March 2008.

As of this writing there are no other publicly released implementations of GE
I know of.

3.4 Conclusion
Most of the research of grammatical evolution to date has been connected with the
UCD NCRA, Natural Computing Research & Applications Group at University
College Dublin (authors of libGE, Michael O’Neill, Anthony Brabazon), and the
BDS, Biocomputing and Developmental Systems group at University of Limerick
(authors of GEVA, Conor Ryan, formerly Michael O’Neill).

While there are several software projects that implement grammatical evolu-
tion, or are based on it, only GEVA both aims to provide a comprehensive EA
environment and is actively developed. I will therefore focus on comparison with
GEVA in the following chapters. When appropriate I will also refer to libGE,
from which GEVA derives its implementation of genotype-phenotype mapping.

8Michael O’Neill’s list of GE software: http://www.grammatical-evolution.org/
software.html

9jGE web site: http://www.bangor.ac.uk/~eep201/jge/
10PyNeurGen web site: http://pyneurgen.sourceforge.net/
11DRP web site: http://drp.rubyforge.org/

38

http://www.grammatical-evolution.org/software.html
http://www.grammatical-evolution.org/software.html
http://www.bangor.ac.uk/~eep201/jge/
http://pyneurgen.sourceforge.net/
http://drp.rubyforge.org/

Chapter 4

Goals

Goals of the accompanying software project are based on both theoretical back-
ground of GE and evolutionary algorithms, as presented in Chapter 2, and the
analysis of strong and weak points of available implementations in Chapter 3.
The software is named AGE (Algorithms for Grammatical Evolution) to reflect
that it does not implement only grammatical evolution as a genotype-phenotype
mapping, but also other related algorithms. I have set the following goals, which
will be reviewed in this chapter:

– a clean, comprehensive implementation of standard algorithms,
– modularity,
– adequate documentation,
– versatile output,
– reproducible results,
– acceptable performance.
Graphical user interface is not among the goals, instead focus has been put

on the quality of the command line interface and textual output. A simple GUI
such as implemented in GEVA, would be a valuable addition that would let AGE
serve better as a demonstration or a tool for exploration of grammatical evolution
for a casual user. Having said that, it is of far greater importance that AGE can
serve as a research tool.

4.1 Implementation of standard algorithms
As has already been proved by libGE, it is possible to implement grammatical
evolution independently of evolutionary algorithms. AGE tries to preserve that
separation where it contributes to cleaner design and permits better future ex-
tensibility. It implements, however, a complete environment for evolutionary
algorithms in a similar way as GEVA does. This has foremost the advantage that
the software can be used as a simple, consistent tool. Additionally, it allows for
more straightforward implementation of GE-specific features such as output of
statistics related to the genotype-phenotype mapping.

The general algorithms and techniques include all those commonly used with
grammatical evolution (see Section 2.6). I have made the selection of algorithm
elements both to match the extent of other GE implementations, and based on
descriptions by O’Neill and Ryan (2003). The implementation itself is based on
a broader understanding of evolutionary algorithms, and draws from respected

39

sources (Goldberg, 1989; Koza, 1992; Banzhaf et al., 1998; Poli et al., 2008) when
possible. I have not attempted to replicate other implementations. This allowed
me to make better sense of all the techniques I implemented, and I hope it will
help the users of AGE likewise. Any particular algorithm used in AGE can be
identified, traced to its description in literature, and easily compared to other
(documented) implementations.

The genotype-phenotype mapping is implemented according to O’Neill and
Ryan (2003).

4.2 Modularity
All algorithm elements are implemented in such a way that they can be easily
changed or replaced. Like the authors of GEVA I have made extensive use of
abstract classes (C++ equivalent of interfaces in Java). Unlike them I do not use
any abstraction of the evolutionary algorithm itself. I believe that this makes for
more readable and clearer code while not compromising modularity. When there
is a real need for a pipeline-based approach, it can be incorporated easily, thanks
to the modular design of all classes.

4.3 Documentation
User documentation provides an overview of all features, including the API (ap-
plication programming interface), which can be used to implement custom mod-
ules and applications. It also features a tutorial for that purpose. All algorithms
accessible from the command line tool and using the API are clearly defined.

4.4 Output and results
As is usual for a command line tool AGE outputs both the final result and inter-
mediate results at specified intervals to provide the user with immediate feedback.
More detailed data, optionally including information about all individuals, can
be saved in files structured using XML. This is a much more robust and forward
compatible way of storing data than simple delimiter-separated values. XML
output is easy to analyse with external tools, and can also visualised using a XSL
style sheet.

The results must be reproducible. They are entirely based on the supplied
parameters, including a seed value for a random number generator (RNG). AGE
uses a portable reentrant RNG implementation, which produces deterministic
sequences even in a threaded environment. The parameters are always saved
along with results.

An evolutionary algorithm with given settings can be conveniently executed
several times with a defined sequence of RNG seeds. In that case, aggregate
statistics from all runs are generated in addition to the per-run output.

40

4.5 Performance
Although optimal performance is not a primary goal, AGE aims to be a practical
tool, not a demonstration, and therefore performance issues cannot be ignored.
To ensure that the implementation is competent, performance in benchmark ap-
plications will be examined (in Chapter 8). Additionally, AGE supports parallel
execution of several runs of an evolutionary algorithm, making it possible to
employ multiple CPUs or CPU cores simultaneously.

41

Chapter 5

Design Decisions

This chapter describes the overall design of AGE in Section 5.1, and highlights a
few of its parts interesting for their design:

• the ramped initialisation method, a generalisation of the “sensible” initial-
isation method, in Section 5.2,

• the evaluation of individuals, performed in C and Lua, in Section 5.3,
• the implementation of mutation operators, including a fast implementation

of bit-level mutation, in Section 5.4.

In Section 5.5 we discuss our approach to portability.

5.1 Overall design
AGE has a simple component-based design shown on Figure 5.1. Its central part
is an engine for evolutionary algorithms and grammatical evolution, the EA/GE
engine. This engine implements an evolutionary algorithm suitable for genetic
programming and the related data structures, algorithms and data structures for
grammatical evolution, and an environment for execution of multiple runs of the
algorithm.

The algorithm elements (initialisers, operators, selectors, and fitness scalings)
are implemented as separate components that communicate with the EA/GE en-
gine through a documented API (application programming interface). Compon-
ents corresponding to all algorithm elements described in Section 2.6 are already
implemented. Applications, represented by a fitness evaluator, can be implemen-
ted in the same way, as components using the API. A tutorial in Section 6.6, and
the applications used for experiments (Chapter 8) demonstrate this.

The EA/GE engine does not produce any human-readable output by itself, it
passes its results to the output engine, which filters, aggregates, and formats the
results. Some of the output is sent to the console for immediate user feedback,
while the more detailed data are stored in files for later processing.

At the top of these components is a simple command line tool. It sets up
the EA/GE engine, the algorithm elements, the application, and the output en-
gine according to user options. It ensures that the supplied options are correct
and sufficient to set up a consistent evolutionary algorithm. Both the algorithm
elements and the applications can advertise their user-configurable parameters

42

EA/GE
Engine

Command Line Tool

Output
EngineAlgorithm elements:

Applications:

CLI

Operator

Selector

Fitness
Evaluator

…

Algorithm, application,
and execution options

Output
options

Setup

Data

Output

Output

AP
I

Errors
Help

SetupAdvertised
interface

Errors

API

Requests
for data

Formats

Files

Console

Figure 5.1: Overall design of AGE, interfaces marked with a dashed line: CLI (com-
mand line interfaces), API (application programming interface), and file
formats.

to the command line tool and use an infrastructure for checking the parameters
and reporting errors. This is a simple way to provide a consistent user interface
across all, existing and future, components. The API that makes this possible
is separate from the core engine API. It is also general enough to be used to
construct a different, currently unsupported, interface (configuration files, GUI
forms) without any changes to the components.

As can be seen on Figure 5.1, this design leads to four interfaces:
– the command line interface,
– the output file formats,
– the EA/GE engine API,
– the (command line) tool API.
These interfaces, as well as the implemented algorithm elements, are docu-

mented in the user documentation in Chapter 6.

43

5.2 Ramped initialisation
AGE implements a slight generalisation of the “sensible” initialisation method
described by O’Neill and Ryan (2003, sec. 8.8), which is based Koza’s ramped
half-and-half initialisation (Koza, 1992, sec. 6.2, app. C).

O’Neill and Ryan (2003) define recursive production rules as production rules
that can be used to derive a tree of arbitrary height, and state: “In Koza’s GP,
functions are responsible for the growth of a tree. As GE uses grammars, this
role is taken over by the recursive production rules. [. . .] If we are using the full
method, if possible, we only choose recursive rules.” However, if we accepted that
the recursive productions are the GE equivalent of GP functions, then (1) the
same argument could be applied to the “grow” (as opposed to “full”) method
as well; (2) it would follow that the non-recursive productions correspond to GP
terminals, and therefore the derivation subtree that starts with these productions
should count only for one (the last) level of tree height.

Taking these thoughts one step further, it becomes clear that production rules,
recursive or not, do not correspond to GP functions at all. In fact the terminals
that represent functions or operators are the equivalent of GP functions, while
nonterminals and production rules depend entirely on the structure of the gram-
mar. Along these lines, it would be more correct, to first convert the grammar
to a form in which all production rules rewrite a nonterminal either to terminals
or to a string containing a terminal corresponding to a GP function. Then an
increase in a GE derivation tree height would correspond exactly to an increase
in a GP tree height.

This is not to say that the derivation tree height cannot be successfully used
as an approximation of the relative complexity of the derived string for most
grammars. I do not, however, see any added benefit in the special treatment of
recursive productions when using the full method.

On these grounds, the ramped initialisation method that I have implemented
(RampedInitialiser, see Section 6.3.1) supports this special treatment of re-
cursive productions only optionally. It can be enabled by the parameter oneill.
Additionally, I have implemented optional generation of unique trees, briefly sug-
gested by O’Neill and Ryan (2003), which is present neither in libGE nor in
GEVA. I have modelled it after the same feature used in GP by Koza (1992).
For its purposes two individuals are considered equal if they map to the same
sequence of production rules. AGE also supports other, rather technical, para-
meters to match the functionality provided by GEVA or libGE (see Section 6.3.1).

The observations made in this short discussion would deserve further devel-
opment, and could be applied to other parts of grammatical evolution as well.

5.3 Evaluation in C and Lua
The fitness evaluation in grammatical evolution is a three-stage process. The
genotype is mapped to the phenotype using a grammar, the resulting phenotype
string is then interpreted as a program in some language, and finally a fitness
value is assigned to the output. Unlike in traditional GP, virtually any program-
ming language can be used. AGE does not constrain this choice. Without any
additional configuration AGE supports evaluation in two languages that cover a

44

wide range of applications. Interpreted code will have better performance in most
cases: as candidate solutions tend to be short and are executed only a fixed num-
ber of times (for each fitness case), the cost of interpreting a program is smaller
than the cost of compilation and the overhead of launching a separate process.
On the other hand, if the candidate solutions perform intensive computations,
the faster execution of compiled code will outweigh these costs.

Compilation is supported using a C compiler. It can work directly with GCC
(GNU Compiler Collection) and PCC (Portable C Compiler), support for other
compilers can be added easily. In both cases the whole population is compiled
as a single unit, common code can be compiled once for all individuals, and the
population is then executed once as a single process even if multiple fitness cases
are evaluated. The source code, the program input and output is sent using a
pipe, instead of using temporary files.1 Additionally, with GCC it is possible to
disable the use of temporary files for intermediate stages of compilation. These
measures reduce the overhead of compilation and execution to a minimum.

Interpreted code is supported using Lua, a lightweight scripting language. Lua
is fast, portable, and easy to learn thanks to its simple syntax.2 Its small code
base and its permissive open-source licence (see Section 6.7) make it possible to
distribute Lua together with AGE.

5.4 Mutation operators
The role of mutation in evolutionary algorithms is usually regarded as secondary,
and the mutation rates are therefore set accordingly low. Koza (1992, p. 27) goes
as far as using a mutation rate of 0 in all his examples, other authors suggest
mutation probabilities ranging from 0.1 % (Goldberg, 1989) to 10 % (Banzhaf
et al., 1998), depending on the problem and the mutation method adopted.

In Section 2.6.5 we have said that the bit-level mutation goes through each bit
of each individual and inverts it with a specified probability. The most straightfor-
ward implementation does exactly that (Goldberg, 1989, fig. 3.7), which involves
calling a random number generator (RNG) once for each bit of genotype, regard-
less how small the mutation probability might be. Given the relative complexity
of random number generation, this can significantly contribute to the computa-
tional time of an evolutionary algorithm.

To remedy this inconvenience, I have implemented a fast version of the bit-
level mutation. As Goldberg (1989) remarks, “it would be possible to avoid
much random number generation if we decided when the next mutation should
occur.” Indeed, as the decision whether to mutate a single bit follows a Bernoulli

1The current implementation uses a POSIX socket pair, which works reliably on several
different UNIX systems. Bidirectional pipes or any other mechanism of interprocess commu-
nication that can be attached to standard input and output streams can be used instead.

2Citing the home page of Lua (http://www.lua.org/about.html): “Several benchmarks
show Lua as the fastest language in the realm of interpreted scripting languages.” This of
course depends on the choice of benchmark tests and other factors. An independent continually
updated comparison of benchmark results of various computer languages is available at http:
//shootout.alioth.debian.org/ (The Computer Language Benchmarks Game), where Lua
is ranked higher than the popular scripting languages Python, PHP, Perl, and Ruby. A website
dedicated to Lua offers more information on how it compares to other languages: http://
lua-users.org/wiki/LuaComparison.

45

http://www.lua.org/about.html
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://lua-users.org/wiki/LuaComparison
http://lua-users.org/wiki/LuaComparison

distribution with parameter pm (the probability of mutation), the number of
unaltered bits until the next mutation follows a geometric distribution with the
same parameter. A random variate from geometric distribution can be generated
in constant time using one RNG call. The implementation details are described
in Section 7.2.

As this version of bit-level mutation is statistically equivalent to the naïve
implementation, I use it as the default bit mutation operator. For the sake of
completeness the naïve implementation is also available.

The codon-level mutation is implemented in exactly the same way as in GEVA,
so that comparison of the two mutation operators can be made. The duplication
operator is implemented according to its description by O’Neill and Ryan (2003)
(see Section 2.6.5), as far as it was possible to understand it.

I am unaware of any reason why the bit-level mutation (used by O’Neill and
Ryan, 2003), or the codon-level mutation (used in GEVA: O’Neill et al., 2008)
should be particularly suitable for grammatical evolution, except for their easy
implementation. A common trait of these two operators is that due to genetic
code degeneracy, there is a high probability that their application does not affect
the phenotype at all, yet once it does, it has a potential of changing the phenotype
very significantly. Other kinds of genetic programming tend to use operators with
more consistent behaviour and effects restricted to a small part of the phenotype,
usually a single subtree (Banzhaf et al., 1998; Koza, 1992).

It seems that the methods of mutation are a neglected area of grammatical
evolution. Both the duplication operator (see Section 2.6.5) and the codon-level
mutation operator can be seen as attempts to find a mutation method that would
better suit grammatical evolution, although poorly rationalised ones.

I will compare bit-level mutation and codon-level mutation in Chapter 8.

5.5 Portability
One of the most important goals of this project is the reproducibility of results. As
a consequence, the implementation must be portable across platforms compliant
with a defined set of standards. AGE is implemented in C++ and C, languages
that provide a reasonable trade-off between portability and performance, which
is another, albeit less critical, goal we have set.

There are only two conditions necessary for compiling and running AGE:

• a C and C++ language compiler and interfaces as defined in the ISO/IEC
14882:1998 (informally “C++ 89”) and ISO/IEC 9899:1990 (informally
“C 90”, virtually identical to ANSI X3.159–1989, “ANSI C”) standards,

• single (32-bit) precision and double (64-bit) precision binary floating-point
data types, accessible as float and double, conforming to the IEEE 754–
1985 standard.

AGE is distributed together with the scripting language Lua (see Section 5.3),
which has a similar policy regarding standards, and which can be compiled with
any compiler and library that supports “C 90”.

46

Additionally, AGE has several optional features, which can be enabled in
environments at least partially conforming to the POSIX (IEEE 1003.1) stand-
ard.3 Whether these features are used or not, does not affect the reproducibility
of results in any way. AGE has been successfully tested on recent versions of
Mac OS X, NetBSD, and Linux.

3POSIX (Portable Operating System Interface for Unix) defines common features of modern
Unix systems such as file system operations, concurrency or interprocess communication. Com-
pliant systems include Mac OS X (fully compliant), Linux (partially compliant), and Microsoft
Windows (partially compliant using the free Cygwin environment or Microsoft’s own Windows
Services for UNIX).

47

Chapter 6

User Documentation

The user documentation describes the build and installation procedure in Sec-
tion 6.1, and covers the interfaces of AGE:

• the command line interface in Section 6.3; the implemented components,
which are available from the command line, in ??;

• the output file formats in Section 6.4;
• the application programming interfaces in Section 6.5; a tutorial for applic-

ation developers in Section 6.6.

Section 6.7 contains copyright and licence information. The user documenta-
tion, including the documentation of the API, is part of the thesis because there
are frequent references between the documentation and the rest of the text.

6.1 Building and installation
AGE is distributed as a portable source code package, and can be built and
installed either automatically using the standard GNU or BSD make utility or
manually. Both procedures involve building the included Lua scripting language
library. The final products are the following files:

• libAGE.a, liblua_AGE.a, static libraries, usually installed in prefix/lib,
• header files for the AGE library, usually installed in prefix/include/AGE,
• AGE, a command line tool, usually installed in prefix/bin,
• data files, usually installed in prefix/share/AGE,

where prefix is the installation directory prefix, such as /usr/local.

Automatic build procedure
Change the working directory to the top level of the distribution. To build AGE
without installing, invoke make with the default target all:

% make all
—or alternatively without arguments—
% make

48

To build and install in the current directory, creating the usual subdirectories
bin, include, lib, and share, invoke make with the target local:

% make local

To build and install into a specified installation directory prefix, invoke make
with the target install and define the INSTALL_PREFIX variable:

% make INSTALL_PREFIX=prefix install

You may choose to install into your home directory or to /usr/local using
sudo to acquire superuser rights:

% make INSTALL_PREFIX=˜ install
% sudo make INSTALL_PREFIX=/usr/local install

If the build process fails because of undefined or conflicting symbols, you
can try to rebuild AGE with limited features to conform strictly to “C++ 89”
and “C 90” (see Section 5.5) by specifying the target ansi (for Lua) and the
preprocessor macro AGE_ANSI (for AGE itself, target all):

% make clean
% make EXTRAFLAGS=-DAGE_ANSI ansi all

If your system does not contain some of the tools used in the makefile, consult
the comments in Makefile and src/Makefile. For more build options, invoke:

% make help

Manual build procedure
When an appropriate make utility or other tools used in the makefile are not
available on your system, you can build AGE manually.

Library: To build the library (AGE and Lua combined), compile and link the
following source files as a static library:

• Lua C source files located in src: lapi.c, lcode.c, ldebug.c,
ldo.c, ldump.c, lfunc.c, lgc.c, llex.c, lmem.c, lobject.c,
lopcodes.c, lparser.c, lstate.c, lstring.c, ltable.c, ltm.c,
lundump.c, lvm.c, lzio.c, lauxlib.c, lbaselib.c, ldblib.c,
liolib.c, lmathlib.c, loslib.c, ltablib.c, lstrlib.c,
loadlib.c, linit.c, located in src/lua-5.1.4/src,

• AGE C source files located in src: BidiPipe.c, PathUtils.c,
Random.c, getopt.c,

• AGE C++ source files located in src: identified by the .cpp
extension, except main.cpp and those with the prefix App-.

Add src, src/lua-5.1.4/src, and src/lua-5.1.4/etc to your header
search paths.

49

Command line tool: To build the command line tool, compile and link the
C++ source files main.cpp and those with the prefix App-, located in src,
and the static library from the previous step as an executable file. Search
for headers in the same directories.
Depending on the environment you use, you may want to define some of
the following macros:

• NDEBUG is the standard macro to disable C assertions.
• LUA_USE_POSIX enables the use of POSIX interfaces for Lua, otherwise

interfaces are restricted to those defined by “C 90”.
• AGE_ANSI restricts the interfaces used by AGE to those defined by

“C++ 89” and “C 90” (see Section 5.5), disables the use of POSIX
interfaces among others. If the POSIX thread library is not available
on your system, you will also need to remove it (-lpthread) from the
linker options (the LIBS variable in src/Makefile).

• AGE_CODON_SIZE=n sets the size of codons in bits. The default value
is 8. Accepted values are between 1 and 31. Codons are aligned on
the boundary of the smallest unsigned integer type sufficient to hold
n bits.

• Other macros, described in the header files src/Configuration.h
and src/lua-5.1.4/luaconf.h.

ArgUtils.h
BNF.h
BNFGrammar.h
Base.h
CCodeLauncher.h
CGrammaticalCodeGenerator.h
CLivePopulation.h
Code.h
CodeFitnessEvaluator.h
CodeGenerator.h
CodeLauncher.h
CodonVector.h
Configuration.h
Elements.h
Error.h
FitnessEvaluator.h
FitnessScaling.h
FitnessScalings.h
FitnessUtils.h
Grammar.h
GrammarChoice.h
GrammaticalCodeFitnessEvaluator.h
GrammaticalCodeGenerator.h

HashSet.h
Individual.h
IndividualCollection.h
IndividualDescriptor.h
Initialiser.h
LivePopulation.h
LuaCodeLauncher.h
LuaGrammaticalCodeGenerator.h
LuaLivePopulation.h
Operator.h
Operators.h
Populable.h
PathUtils.h
PtrSet.h
RampedInitialiser.h
Random.h
RandomInitialiser.h
Selector.h
Selectors.h
Tool.h
pstdint.h
yasper.h

Listing 6.1: AGE library header files, all located in src.

Other files: Whether you build a custom executable or the default command
line tool, you will also need to put the data files located in resources/AGE
to a proper place. When POSIX interfaces are available, AGE expects them

50

in ../share/AGE relatively to the executable as usual on Unix systems,
otherwise it expects them in the current directory.
To use the static library for a custom executable, you will need to copy
the C++ header files from Listing 6.1 located in src to your header search
path.

6.2 Command line interface Note: For
AGE v1.1 and
later, see also
the file
Documentation-
addendum-
1.1.pdf.

The AGE demonstration command line tool, or a custom executable based on the
Tool (see Section 6.5.8) class from the AGE library, is controlled by command line
options, and outputs the results to the console. This section describes the options
and the format of the console output. The file output is described separately in
Section 6.4.

The options enclosed in brackets are not mandatory. The order of the options
does not matter. When no options are supplied, a short summary of options is
printed, including the possible arguments for the options -X, -M, -I, -A, -s, and
-S.

Unless indicated otherwise, the following convention is used for option argu-
ments:

– n is a natural number,
– p, or r, is a probability, or a rate, from [0, 1],
– f is a fitness value.
Custom executables may have additional options or supply different default

values, possibly making different options mandatory.

Algorithm options
The arguments accepted by the options -X, -M, -I, -A, -s, and -S depend on
the available components (algorithm elements and applications). Invoking the
tool with no options lists the available arguments and provides a brief synopsis
of each. The components already implemented in AGE, and thus available in the
demonstration command line tool, are fully documented in ??.

For information about implementing your own components or customising the
command line tool, see Section 6.5.

-p n sets the number of individuals in the population to n.

-g n sets the maximum number of generations to n. The evolution starts with
generation 0 and proceeds up to generation n− 1.

-x p sets the probability of the crossover operator specified by the -X option
to p.

[-m p1,. . .,pn] sets the probabilities of the mutation operators, in the order they
are listed in the -M option to p1, . . . , pn, a comma-separated list. The option
is mandatory if mutation is enabled.

[-r r] enables the steady-state algorithm with replacement rate r (see Sec-
tion 2.6.6).

51

[-f f] stops the evolutionary algorithm when the best individual of the popu-
lation reaches the fitness level f or better.

[-X Crossover] specifies the crossover operator with the argument Crossover .
Default: one-point crossover (-X one-point).

[-M M1,. . .,Mn] specifies the mutation operators with the comma-separated
arguments M1, . . . ,Mn. Default: fast bit-level mutation (-M bit).

-I Initialiser specifies the initialiser with the argument Initialiser .

-A Application specifies the application, represented by a fitness evaluator,
with the argument Application.

[-s s1,. . .,sn] specifies the fitness scalings with the comma separated argu-
ments s1, . . . , sn. The scalings are applied in that order. Default: no scal-
ing.

[-S Selector] specifies the selection scheme with the argument Selector . De-
fault: roulette-wheel (-S roulette).

[-e e] [-d] [-b] enables elitism with an elite of e individuals (see Section 2.6.6).
Unless the -d option is supplied, multiple instances of the same individual
are removed from the elite, e is then the initial size and may be reduced
if duplicates are present. If the -b option is supplied, only those individu-
als from the elite that are better than the current best individual of the
generation are merged back into the population.

Execution options
[-n n] executes a sequence of n runs of the evolutionary algorithm set up by

the above options. Default: execute one run and seed the random number
generator directly with the value specified by the -R option (-n 0).

[-R n] seeds the random number generator with the number n. If a sequence
of runs is enabled by the -n option, the number is used to seed a generator
that generates seeds for the runs. (The generated seeds can be found in the
XML output, see Section 6.4.1.)

[-t n] creates a thread pool of n execution threads. Each thread executes one
run at a time. For optimal results, do not set the number of threads greater
than the number of runs or greater than the number of available CPUs or
CPU cores. The number of threads does not affect the results. Default:
no thread pool, only the main thread (-t 1). Threads are available only if
AGE is compiled with POSIX threads enabled.

Console and file output options
The following options affect the console output and output to the text files (de-
scribed in Section 6.4.2). The XML output (described in Section 6.4.1) is not
affected.

52

[-h f] records a hit when the best individual of a population reaches the fitness
level f or better. This option is similar to -f, except that it only affects
the output, and does not stop the evolutionary algorithm. If the option is
set, the number of hits per generation accumulated from all runs is printed
to the console and to the file GenerationHits.txt in the output direct-
ory, if specified by the -o option. The format of the file is described in
Section 6.4.2.

[-v] enables moderately verbose output:
– run results in the console output will contain the total numbers of oper-
ations performed by each operator;

– generation results (activated by -G) will contain additional fields;
– overall statistics file GenerationStats.txt (activated by -o) will also
contain these additional fields;

– overall statistics in the console output (activated by -O) will also contain
these additional fields.

The latter three share the format of the GenerationStats.txt file de-
scribed in Section 6.4.2, which also lists the additional, “verbose”, fields.

Console output options
[-G n] prints statistics from each nth generation of every run. When used in

conjunction with threads (the -t option), it intermixes output from multiple
runs.

[-O] prints statistics of all runs aggregated by generation. Regardless of this
option the overall statistics are saved in the file GenerationStats.txt in
output directory, if specified by the -o option. Also see -v.

File output options
[-o OutputDir] saves XML output and statistics into directory OutputDir . If

AGE is compiled with POSIX interfaces enabled, nonexistent directories
are created, and directories already containing output are not overwritten.

[-i] includes details about each individual in the XML output.

The file formats are described in Section 6.4.

Console output
The console output serves as immediate feedback and overview of the results. It
does not contain any information that could not be retrieved from the file output,
which is more suitable for further processing.

By default, AGE prints the best individual of each run of the evolutionary
algorithm and only the most important related information:

• Whether the fitness stop limit has been reached (the -f option).

53

• Run: runs are numbered from 0 to n − 1 in a sequence of n runs. When
threaded execution is enabled, runs with lower numbers may finish earlier
than runs with higher numbers.

• Best fitness: fitness value of the best individual found during the run.
• Generation: first generation (numbering from 0) containing the best-of-run

individual. If the fitness stop limit has been reached, it is also the last
generation executed in that run.

• Individual: the best individual. Its representation is application-dependent,
by default, the phenotype string is printed.

• Optionally, the total numbers of operations performed by each operator,
activated by the -v, “verbose”, option.

Example of such an output of four runs can be seen in Listing 6.2. In runs
2 and 3, there were no improvements in the best fitness value after generation
54 and 8 respectively, and the two runs continued up to to maximum number
of generations, 101, without reaching the desired fitness level 10−5. In runs 0
and 1, the desired fitness level has been reached, and the runs were stopped at
generation 15 and 25 respectively.

Optionally, the console output can contain two additional sections, which are
printed out after all runs finish:

• cumulative fitness hits, activated by the -h option, which replicate the
contents of the GenerationHits.txt file,

• averaged overall statistics, activated by the -O option, which replicate the
contents of the GenerationStats.txt file.

If activated, these section are included in the console output, even if the file
output is not enabled (the -o option). Listing 6.3 shows such an output. Note
that the option -f used for Listing 6.2 has been replaced by the -h and -O options.
Format of these sections is described in details in Section 6.4.2

Finally, when an error occurs or the user supplies incorrect options, AGE
terminates with a nonzero exit value, and prints an error message to the standard
error stream. Any unfinished XML output is terminated properly and will include
an appropriate stopped element as defined in Section 6.4.1.

54

% AGE -n4 -p100 -g101 -e1 -x0.9 -m0.02 -I'random(10-99)' -Areg -sadj -R55
-f1e-5

S: 1 if fitness stop limit (1e-05) reached, 0 otherwise
Gen: generation when BestFitness of the run first recorded

S Run BestFitness Gen Individual (best of every run)
1 0 2.75215e-31 15 (((x * (x * x)) + x) * (1.0 + x))
1 1 4.01749e-31 25 ((x * ((1.0 + ((1.0 + x) * x)) *
x)) + x)

0 2 0.507607 54 ((x + 1.0) * (x + (x * x)))
0 3 0.507607 8 (((((1.0 + x) * x) + 1.0) + x) * x)

Listing 6.2: Console output example: minimal output.

% AGE -n4 -p100 -g101 -e1 -x0.9 -m0.02 -I'random(10-99)' -Areg -sadj -R55
-h1e-5 -O

S: 1 if fitness stop limit (unset) reached, 0 otherwise
Gen: generation when BestFitness of the run first recorded

S Run BestFitness Gen Individual (best of every run)
0 0 2.14163e-31 95 (((1.0 * (x * x)) + x) * (1.0 + ((x
* x) * 1.0)))

0 1 3.76327e-31 51 ((x * ((1.0 + (((x * ((x * x) +
x)) + 1.0) + x)) * 1.0)) - x)

0 2 0.507607 54 ((x + 1.0) * (x + (x * x)))
0 3 0.507607 8 (((((1.0 + x) * x) + 1.0) + x) * x)

CUMULATIVE FITNESS HITS:
Gen Runs with fitness better than or equal to 1e-05

0 0
1 0

...

14 0
15 1

...

24 1
25 2

...

100 2

AVERAGED OVERALL STATISTICS:
Gen Invalids BestFitness AvgFitness

0 13.5000 6.35023 43.9313
1 4.25000 3.06787 21.7976

...

100 1.25000 0.253803 46.8393

Listing 6.3: Console output example: output with fitness hits (shortened).

6.3 Implemented componentsNote: For
AGE v1.1 and
later, see also

the file
Documentation-

addendum-
1.1.pdf.

This section mirrors the structure of Section 2.6, as the AGE library implements
all algorithms described in that section. Additionally, we will describe the imple-
mented applications, which are part of the demonstration command line tool.

Each component is listed under the name of the class that implements it,
which is followed by a description and three short sections:

Argument: The argument form to be used for the corresponding command line
option in order to specify an algorithm element. Arguments that do not
have any options are simple labels, such as roulette for roulette-wheel
selection. A roulette-wheel selection is therefore specified by -S roulette.
Arguments that have parameters are in one of the following forms:

label(m1,...,mM)

label(m1,...,mM [,o1,...,oN])
label([o1,...,oN])

where label identifies the algorithm element, m1 tomM are mandatory para-
meters, and o1 to oN are optional parameters, which have default values.
Parentheses and commas are part of the syntax. The parameters are pos-
itional, which means that you can supply the first n ≤ N of the optional
parameters, but not for instance only the first one and the third one. If
there are no mandatory parameters and you do not supply any optional
ones, the enclosing parenthesis can be omitted. If you invoke AGE from a
standard Unix shell, any parentheses will have to be quoted or escaped.
For instance the argument tour([t]) for tournament selection means that
the tournament selection has one optional parameter t (the tournament
size). Tournament selection can therefore be specified as -S tour to use the
default tournament size, or as -S tour(4) to use a size of 4, in which case
the command line options will usually have to be entered as -S 'tour(4)'
or -S tour\(4\).

Interface: The source file that contains the interface of the component. Recurs-
ively included header files are not listed. Additionally, all implemented
algorithm elements can be including using the convenience header file Ele-
ments.h.

Implementation: The source files that contain the implementation of a compon-
ent. The files the implementation depends on are listed only if they are not
part of the AGE library.

6.3.1 Initialisers
RandomInitialiser implements random initialisation.

Argument: random(m-n)
m to n (inclusive) is the range of chromosome lengths.

56

Interface: RandomInitialiser.h

Implementation: RandomInitialiser.cpp

RampedInitialiser implements a generalisation of the “sensible” initialisation
method devised by O’Neill and Ryan (2003, sec. 8.8), which in turn is
based on Koza’s ramped half-and-half initialisation. See Section 5.2 for a
discussion.
In addition to the range of derivation tree heights, a number of other op-
tional parameters are implemented: a specific “grow” rate (the default is
one half initialised by the “grow” method, one half by the “full” method,
hence the name “half-and-half”), which can be either stochastic (interpreted
as probability, as in GEVA), or deterministic (interpreted as a ratio, as by
Koza, 1992); a special treatment for recursive productions (discussed in Sec-
tion 5.2); generation of unique trees (discussed in the same section); and
generation of “tails” with random degenerate codons (as implemented in
libGE: Nicolau and Slattery, 2006).

Argument: ramped(m-n[,stoch,grow,oneill,u,tl,tr])
m to n (inclusive) is the range of derivation tree heights, m = 0 is

replaced by the lowest height possible for a given grammar;
stoch indicates whether the “grow” rate is to be interpreted as a

probability (1), or a ratio (0, default);
grow is the “grow” rate from [0, 1], default: 0.5;
oneill indicates whether recursive productions receive special treat-

ment “O’Neill-style” (1), or not (0, default), see Section 5.2;
u indicates whether each generated tree is unique (1), or not (0,

default);
tl is the absolute length of the tail of random codons (default: 0);
tr is the ratio of the tail length to the significant part length (de-

fault: 0).
At least one of tl and tr must be 0.

Interface: RampedInitialiser.h

Implementation: RampedInitialiser.cpp

6.3.2 Selectors
All implemented selection methods are with replacement in the sense that the
same individual can be re-selected by repeated invocation of a given selection
method. All tournament selection methods are without replacement within a
given tournament (discussed in Section 2.6).

RouletteWheelSelector implements roulette-wheel selection as described in
Section 2.6.

Argument: roulette (no parameters)
Interface: Selectors.h

Implementation: Selectors.cpp

57

RandomTournamentSelector implements a variant of tournament selection.
It is without replacement within a given tournament. Called simply “tour-
nament” by Koza (1992). Similar to the implementation in GEVA, which
is, however, with replacement within a given tournament.

Argument: tour([t])
t tournament size (default: 2).

Interface: Selectors.h

Implementation: Selectors.cpp

WetzelTournamentSelector implements a variant of tournament selection.
It is without replacement within a given tournament, and picks compet-
itors using roulette-wheel selection. It is the only tournament selection
method, “stochastic tournament” or “Wetzel ranking”, described by Gold-
berg (1989). Similar to the implementation in GAlib, which is however,
with replacement within a given tournament, and only allows tournaments
of size 2.

Argument: wtour([t])
t tournament size (default: 2).

Interface: Selectors.h

Implementation: Selectors.cpp

6.3.3 Fitness scalings
FitnessReversal implements a reversal transformation f ′ = c−f . The constant

c is by default the maximum fitness in the current generation, or altern-
atively the sum of the maximum and the minimum. The former maps
maximum to zero, the latter maps maximum to minimum and vice versa,
and thus preserves the range of values.

Argument: rev([preserve])
preserve indicates whether to preserve the range of fitness values (1),

or simply map the maximum to zero (0, default).
Interface: FitnessScalings.h

Implementation: FitnessScalings.cpp

AdjustedFitnessInversion implements Koza’s adjusted fitness scaling.

Argument: adj (no parameters)
Interface: FitnessScalings.h

Implementation: FitnessScalings.cpp

FitnessInversion implements a simple inversion f ′ = 1/f , as suggested by
Nicolau and Slattery (2006). Implemented primarily for comparison with
Koza’s adjusted fitness. Its usefulness may be limited.

58

Argument: inv (no parameters)

Interface: FitnessScalings.h

Implementation: FitnessScalings.cpp

LinearFitnessScaling implements Goldberg’s linear scaling with factor k.

Argument: lin([k])
k is the factor k, expected number of copies of the best individual,

k ≥ 1, default: 1.2.

Interface: FitnessScalings.h

Implementation: FitnessScalings.cpp

6.3.4 Crossover operators
A probability of any crossover operator (incidentally only one is currently imple-
mented) is set by the -x command line option, separately from other parameters.

OnePointCrossover implements one-point crossover on variable-length chro-
mosomes, or alternatively on fixed-length chromosomes. If a chromosomes
is at least two codons long, the crossover occurs at one of its inner points,
not before the first codon or past the last codon.1

Argument: one-point([fixed])
fixed indicates whether to preserve the length of chromosomes (1),

or not (0, default).

Interface: Operators.h

Implementation: Operators.cpp

6.3.5 Mutation operators
A probability of mutation operators is set by the -m command line option (see
Section 6.3), separately from other parameters.

BitMutation implements bit-level mutation using a faster algorithm. Recom-
mended for general use instead of SlowBitMutation. See Section 5.4 for
discussion and Section 7.2 for implementation details. Performance tests
are done in Section 7.2 and in an experiment in Section 8.2.3.

Argument: bit (no parameters)

Interface: Operators.h

Implementation: Operators.cpp

1This ensures that at least some genetic material, although possibly degenerate, is exchanged.
The same method has been used by Goldberg (1989) and in libGE. In GEVA crossover can
occur before the first codon at both chromosomes, which just swaps their contents.

59

SlowBitMutation implements bit-level mutation using a naïve, and signific-
antly slower, algorithm. The implementation in BitMutation is recom-
mend for general use, see discussion in Section 5.4.

Argument: slowbit (no parameters)

Interface: Operators.h

Implementation: Operators.cpp

CodonMutation implements codon-level mutation exactly in the same way as
it is implemented in GEVA.

Argument: codon (no parameters)

Interface: Operators.h

Implementation: Operators.cpp

Duplication implements duplication according to its description by O’Neill and
Ryan (2003).

Argument: duplication (no parameters)

Interface: Operators.h

Implementation: Operators.cpp

6.3.6 Implemented applications
The fitness evaluators and the related application-dependent classes are imple-
mented outside the AGE library and are used in the demonstration command
line tool. To make the separation clear, the applications are implemented in files
whose names begin with “App-”.

RegressionFitnessEvaluator implements symbolic regression, used for exper-
iments in Section 8.2.

Argument: reg([language, m-n, square, maxWraps, bnf])
language identifies the language for evaluation, either lua (default),

lua-safe or c.
m to n (inclusive) is the range of exponents of the target polynomial

xm + · · ·+ xn, default: 1 to 4.
square indicates whether to square errors (1, default), or use an ab-

solute value (0).
maxWraps is the maximum number of wrapping events, default: 3.
bnf is path to the BNF grammar file, default: the grammar used in

Section 8.2.

Interface: App-RegressionFitnessEvaluator.h

Implementation: App-RegressionFitnessEvaluator.cpp,
App-Regression.h, App-Regression.cpp

60

AntTrailFitnessEvaluator implements the ant trail problem, used for experi-
ments in Section 8.3, implementation discussed in the tutorial for applica-
tion developers in Section 6.6.

Argument: ant([higherbetter, time, trail, maxWraps, bnf])
higherbetter indicates whether standard fitness ordering is used (1)

instead of reverse ordering (0, default).
time is the time limit, default: 600.
trail is the trail map file, default: Santa Fe ant trail.
maxWraps is the maximum number of wrapping events, default: 3.
bnf is path to the BNF grammar file, default: the grammar used in

Section 8.3.

Interface: App-AntTrailEvaluator.h

Implementation: App-AntTrailEvaluator.cpp, App-AntTrail.h,
App-AntTrail.cpp

6.4 File formats
AGE optionally saves a more detailed output in a directory specified by the -o
option. The directory contains the following files:

• AGE.xml, which lists the command line options,

• EvolutionRun-nnnn.xml files, which include detailed data in XML from
each run,

• AGE.xsl, which contains a XSL style sheet for visualisation of the above
files,

• GenerationHits.txt, which contains cumulative numbers of fitness hits
aggregated by generation, if a limit is specified by the -h option,

• GenerationStats.txt, which contains averaged overall statistics aggreg-
ated by generation.

As can be seen, the output consists of XML data and text. The two text files
do not contain any information that could not be computed from the XML data,
they are created for the user’s convenience.

6.4.1 XML data
The AGE.xml file is a simple XML file consisting of a single element options,
which contains the command line options supplied to AGE, one per line. The file
is in XML to allow for future extension with more structured parameters while
maintaining backwards compatibility.

The EvolutionRun-nnnn.xml files are generated for each run. Their names
contain a zero-padded numbers of the runs counting from zero (nnnn). Their
format consists of a hierarchy of elements:

61

<evolution run="n" seed="s"> populations stopped </evolution>
is a top-level element that delimits the run number n of the evolutionary
algorithm. The random number generator seed s is indicated so that the
single run can be reproduced using the -r option (without -n). The element
contains multiple population elements, one for each generation of the run,
and one stopped element.

<population
generation="g" fitnessOrder="fo" fitnessRange="fr"
minFitness="minF" maxFitness="maxF"
avgFitness="avgF" varFitness="varF"
invalids="i"
avgLength="avgL"

[avgUsedCodons="avgUC" avgWraps="avgW "
avgDerivationTreeHeight="avgDTH"] (optional)
crossovers="c" mutations="m"

> individuals </population>
delimits and describes a population of a generation g. The fitness order-
ing fo is either HigherBetter (standard), or LowerBetter (reverse), the
fitness range fr is either Unbounded or Nonnegative. The fitness statistics
(minF , maxF , avgF , varF) are computed from all valid individuals in the
population.
The number of invalid individuals is i. The average length of chromosome
in codons is avgL.
The average number of used codons (multiple use is counted) avgUC , the
average number of wrapping events avgW , and the average derivation tree
depth avgDTH are present only if made available by the fitness evaluator,
and, again, are computed only from valid individuals.
The number of crossover operations is c, and the numbers of mutation op-
erations are listed in m, a comma-separated list of counts for each mutation
operator.
If individual information output is enabled by the -i option, the element
contains individual elements, one for each individual in the population.
Otherwise, it contains the noindividuals element.

<stopped reason="r" />
indicates why the evolutionary algorithm was stopped. The attribute r may
have one of the following values:
– MaxGeneration, when the maximum number of generations was reached,
– Halted, when the algorithm was halted (due to an error in another run
or for other external reason),
– StopLimit, when the fitness reached the limit specified by the -f option,
– Failed, when an error occurred.

<individual fitness="f" description="d"
[best="1"] [invalid="1"] />

describes a single individual with a fitness value f and an application-

62

dependent description d. The optional parameters denote an invalid in-
dividual or the best individual of the generation. Only one individual is
labelled as the best one, even if there are more of them with an equal
fitness value.

<noindividuals size="n" />
is a placeholder for n individuals if individual information output is not
enabled by the -i option.

The AGE.xsl file contains a XSL style sheet that transforms the XML output
into a CSS-styled HTML visualisation of the results suitable for viewing using
a web browser. The transformation can be done either using a XSLT processor,
such as xsltproc, or directly in a web browser that supports it. As of this
writing, Mozilla Firefox 3.0 has a sufficiently powerful implementation of XSL to
apply the style sheet.

In Figure 6.1 you can see results from a run of the Santa Fe ant trail experiment
as displayed in a web browser. All individuals are shown in a graph and it is
possible to view details about each of them.

While such a visualisation can certainly be useful, it also serves as a demon-
stration of how easily can the XML data produced by AGE processed given the
wide support XML has gained across a wide range of software tools.

63

F
igure

6.1:
V
isualisation

ofX
M
L
data

in
a
w
eb

brow
ser

using
a
X
SL

style
sheet:

a
run

ofthe
Santa

Fe
ant

trailapplication.
Translucent

boxes
m
ark

individuals,shortorange
linesm

ark
averages,boxesw

ith
a
red

borderm
ark

invalid
individuals(see

the
out-of-boundsindividual

in
generation

7),boxes
w
ith

a
green

border
m
ark

best-of-generation
individuals.

H
overing

the
m
ouse

cursor
over

them
displays

the
individual’s

description,fitness
value

and
best/invalid

inform
ation.

(C
olours

not
visible

in
black

and
w
hite

print.)

6.4.2 Text data
The text files consist of a one-line header and lines of data, one for each generation.
The data are divided into columns with names specified in the header. Columns
are separated by tab characters and may be padded to a certain width with
spaces. The format of the two following files is also used for the corresponding
sections of the console output.

The GenerationHits.txt file, which contains cumulative fitness hits if ac-
tivated by the -h option, has two columns:
Gen

contains the generation number.
Runs with fitness better than or equal to f

contains the number of runs that reached fitness better than or equal to f ,
the fitness hit limit specified by the -h option.

The GenerationStats.txt file contains averaged statistics of all runs. The
data is aggregated by generation, so that each line contains an average taken over
all runs of statistics in a given generation. The file has the following columns,
which correspond to attributes of the population element in the XML output:
Gen

contains the generation number.

Invalids
contains the average number of invalid individuals.

BestFitness
contains the average of best fitness values.

WorstFitness (if verbose output enabled)
contains the average of worst fitness values.

AvgFitness
contains the average of average fitness values.

VarFitness (if verbose output enabled)
contains the average of variances of fitness values.

AvgLength (if verbose output enabled)
contains the average of average lengths of chromosome in codons,

AvgUsdCodons (if verbose output enabled)
contains the average of average numbers of used codons (multiple use is
counted).

AvgWraps (if verbose output enabled)
contains the average of average numbers of wrapping events.

AvgTrHeight (if verbose output enabled)
contains the average of average tree heights.

As in the XML output, invalid individuals are excluded from the statistics,
and the last three columns are present only if the information is made available
by the fitness evaluator. Verbose output can be enabled by the -v option.

65

6.5 Application programming interface
The application programming interfaces of AGE stem from its overall design,
discussed in Section 5.1.

The EA/GE Engine API will be described in the following sections, each
covering one or more header files:

• Section 6.5.1 covers basic data types, provided by Base.h and yasper.h.

• Section 6.5.2 covers error (exception) classes, provided by Error.h.

• Section 6.5.3 covers random number generation and related interfaces,
provided by Random.h.

• Section 6.5.4 covers more advanced types and functions for working with
fitness, provided by FitnessUtils.h.

• Section 6.5.5 covers individuals, data types that constitute individuals,
and individual collections, provided by Individual.h, Chromosome.h,
CodonVector.h, and IndividualCollection.h.

• Section 6.5.7 covers classes that implement the GE mapping, provided by
Grammar.h and BNFGrammar.h.

• Section 6.5.6 covers interfaces implemented by component classes,
provided by Initialiser.h, Operator.h, FitnessEvaluator.h,
FitnessScaling.h, and Selector.h.

The Command Line Tool API is described in Section 6.5.8, and provided by
ArgUtils.h and Tool.h.

The APIs are grouped by data types (abstract and concrete classes, struc-
tures, type definitions) and, in a few cases, global functions. If you are reading
the electronic version, all data type names that occur throughout the text are hy-
perlinks to their descriptions. Description of each data type lists all of its public
fields and methods relevant for application developers.

In the following text I will often say that an abstract class is, or defines, an
interface, and I will refer to abstract classes as to interfaces. If a class implements
an interface, it technically means that it inherits from an abstract base class and
implements all of its pure virtual methods.

After building and installing AGE, the header files that provide the API are
located in a subdirectory AGE of /usr/local/include or another include dir-
ectory, based on the installation setup (see Section 6.1). All data types and
global functions declared or defined in them are contained in the AGE namespace,
including (AGE::)yasper::ptr. The inclusion of AGE headers also results in
definition of several preprocessor macros, all of which either come from standard
C and C++ header files or are prefixed with AGE or _AGE.

The API header files are covered by the same opensource licence as the whole
software project, the three-clause BSD licence, with the exception of yasper.h
covered by the similarly liberal zlib/libpng licence. See Section 6.7 for complete
information.

66

6.5.1 Basic data types
Base.h provides several basic data types and one interface, technically a pure
abstract class:

Codon is an unsigned integral data type with a sufficient range to hold codons.
The number of bits per codon is defined by the constant CodonBits; the
number of possible codon values is defined by the constant CodonVal-
ues (equal to 2n, n = CodonBits). The actual width of the Codon type
may be larger, in that case only the lower-order CodonBits bits are taken
into account, and the higher-order bits must be set to zero. The data type
and the related constants are determined by the preprocessor macro AGE_-
CODON_SIZE, which can be used to set a custom codon size in bits.

Range is a structure that represents a range of unsigned integers, used in a vari-
ety of situations. It consists of two public fields and provides a convenience
constructor:

unsigned start;
is the first valid value of the range,

unsigned size;
is the number of values in the range.

Range(unsigned aStart, unsigned aSize);
creates a range of aSize values starting with aStart.

Fitness is a floating-point data type with a sufficient precision for representing
raw or scaled fitness values. It is guaranteed to be at least as precise as
float, the built-in single precision data type it currently defines.
Valid fitness values are finite, the minimum (smallest negative) and max-
imum (largest positive) values of fitness are accessible as the constants Fit-
nessMin and FitnessMax. Values not in [FitnessMin, FitnessMax] are
invalid and may be reserved for special purposes. The only such invalid
value that has a defined meaning is the constant FitnessUnknown, which
is used as a placeholder for unknown fitness values. When implementing a
fitness evaluator and fitness scaling you are responsible for returning valid
fitness values.
More advanced APIs related to fitness are discussed in Section 6.5.4.

DFitness is a floating-point data type for intermediate fitness calculations with
increased precision.

Cloneable is an interface implemented by all component classes. It consists of
a single pure virtual method:
virtual Cloneable* clone() const = 0;

A class that implements Cloneable must be able to clone its objects so that
all their parameters (at least those passed to the constructor) are preserved,
but no state information, or information related to other objects is copied

67

to the clone. The clone() method usually can be implemented using the
new operator and a constructor. The clone() method should be defined
with a covariant return type in concrete subclasses. See Section 6.5.6 for
interfaces that inherit from Cloneable.

Additionally, special pointer types are used for dynamically allocated objects:

yasper::ptr<X> is a smart, reference-counted pointer to type X provided by
the yasper library (contained in the yasper.h header file). When instances
of class X are to be allocated dynamically, its definition also contains
X::Ptr, which is defined as yasper::ptr<X>. Additionally, a handful
of classes not used in contexts where reference counting is needed define
the type X::APtr as the standard C++ automatic pointer std::auto_-
pointer<X>.

6.5.2 Errors
Throughout the AGE library, errors are handled using C++ exceptions. The
header Error.h provides two exception classes to this purpose: Error and User-
Error, both of which subclass Cause. You can use these exception classes to
report errors from component classes (see Section 6.5.6).

Error is a subclass of std::runtime_error. Use it for unrecoverable errors
caused by unexpected conditions, such as shortage of resources.
AGEError(description,cause)
AGEErrorNoCause(description)

Use these preprocessor macros instead of constructors. The parameter
description is an error description (an instance of std::string), and
the parameter cause is a standard errno value or an instance of an-
other Error or UserError.

UserError is a subclass of std::logic_error. Use it for errors caused by user
setup or user-supplied data. Make sure that you always generate a clear,
descriptive message (the parameter description) for user errors.

explicit
UserError(const std::string& description);
UserError(const std::string& description,

const Cause& cause);
UserError(const std::string& description,

int anErrnoCause);
Use these constructors to create an exception, optionally with a cause,
which is either a standard errno value or an instance of another Error
or UserError.

Cause is an abstract base class for Error and UserError. If you use AGE in a
custom executable, you should catch exceptions of these two classes. You
can then use the method fprint() to write the exception to a specified
stream, or the shorthand method logAndFail() to print the exception to
the standard error stream and terminate with the standard EXIT_FAILURE
status:

68

void fprint(FILE* f) const throw();
void logAndFail(const char* introMsg) const throw();

where introMsg is an introductory message printed before the excep-
tion information itself in a similar fashion as by the standard function
perror().

6.5.3 Random numbers
All interfaces related to the generation of random numbers are in the header
Random.h. The random number generator is implemented in the class Random
and does not rely on any external library. The class BiasedCoin can be used to
implement operators, which are applied with a specified probability.

Random::Seed is an unsigned integral data type for representing random num-
ber generator seeds, numbers used to initialise its state. It is defined to the
built-in type unsigned and any unsigned value is accepted. It should be
however noted that the value 0 is always interpreted as 1, zero should there-
fore be avoided in order to guarantee that each seed generates a different
sequence.

Random implements a random number generator. Each instance of class Ran-
dom maintains its own state, which makes it suitable for a multithreaded
environment. Algorithm elements receive a reference to an instance of Ran-
dom and must not use any other external or internal source of randomness.

unsigned random();
generates a random integer from 0 to AGE_RANDOM_MAX (231).

double randomLessThanOne();
generates a random floating-point number from the interval [0, 1).

double randomLessThan(double high);
generates a random floating-point number from the interval [0, high).

Codon randomCodon();
generates a random codon value.

If you need random numbers in a fitness evaluator, you can create your own
instance of Random using the following constructor:

explicit Random(Seed seed);
creates a random number generator and initialises its state with the
parameter seed. See Random::Seed above.

BiasedCoin can be used to simulate Bernoulli trials with a specified probability
of success. The probability values are embedded in BiasedCoin instances,
which are immutable, except for the assignment operator. The generator is
supplied as a parameter to the flip() method. Operators should use this
class unless they need a more elaborate interpretation of probability.

69

BiasedCoin();
creates an invalid biased coin (with unset probability); isValid()
will return false. This default constructor can be used to create a
placeholder instance until the probability is set and a valid biased coin
is assigned.

explicit
BiasedCoin(float prob);

creates a valid biased coin with probability of success prob from [0, 1];
isValid() will return true.

bool isValid() const;
indicates whether the probability was set by the constructor.

bool isZero() const;
indicates whether the probability is exactly zero. Note that operators
with zero probability are not applied, checks in the operator’s imple-
mentation are therefore superfluous.

bool flip(Random& r) const;
simulates a Bernoulli trial using the supplied random number generator
r, and indicates whether it was successful.

6.5.4 Fitness
FitnessUtils.h provides additional types and functions related to fitness, which
form an infrastructure for flexible and correct handling of fitness as outlined
in Section 2.2. Most notably, the fitness values are associated with a range
(FitnessRange) and ordering (FitnessOrder).

FitnessVector is a shorthand for std::vector<Fitness>, and can be used
interchangeably. Fitness vectors stand for the fitness of multiple individuals
when other properties of the individuals are not significant, for instance
when scaling fitness or applying selection.

FitnessOrder is an enumeration type that defines two orderings of fitness values:
– FitnessOrderUnknown is a special value for an unknown or undefined
ordering,
– LowerBetter is the reverse ordering,
– HigherBetter is the standard ordering.

FitnessRange is an enumeration type that defines two ranges of fitness values:
– FitnessRangeUnknown is a special value for an unknown or undefined
range,
– FitnessUnbounded specifies values from [FitnessMin, FitnessMax],
– FitnessNonnegative specifies values from [0, FitnessMax]
Note that there is no range of [FitnessMin, 0], as it would be equivalent to
the FitnessNonnegative range with a reverse ordering.

70

The header file also provides an interface to static functions for simple oper-
ations with these data types:

FitnessVector FitnessVectorFromDoubles(
FitnessRange r, std::vector<double> dv);

converts a vector of values of type double to a vector of valid fitness values
from range r. Values higher than FitnessMax are truncated. If the range
is FitnessUnbounded, values lower than FitnessMin are also truncated.
If the range is FitnessNonnegative, negative values are not accepted.
Infinite values are truncated properly, but NaN values are not accepted.

FitnessVector FitnessVectorFromInts(
FitnessRange r, std::vector<int> iv);

converts a vector of values of type int to a vector of valid fitness values
from range r. Values higher than FitnessMax are truncated. If the range
is FitnessUnbounded, values lower than FitnessMin are also truncated.
If the range is FitnessNonnegative, negative values are not accepted.

FitnessOrder FitnessOrderOpposite(FitnessOrder order);
returns the opposite order.

Fitness FitnessBest(FitnessRange range,
FitnessOrder order);

Fitness FitnessWorst FitnessRange range,
FitnessOrder order);

return the best and worst fitness values for a given range and ordering.

bool FitnessIsBetterOrEqual(FitnessOrder order,
Fitness f, Fitness g);

returns true when f is better than or equal to g in the specified ordering,
otherwise returns false.

FitnessStats is a structure for fitness statistics of multiple individuals. It con-
sists of four public fields:

Fitness min;
Fitness max;
Fitness avg;
Fitness var;

that represent the minimum, maximum, average and variance of fitness
values. Invalid individuals are not included in the statistics.

6.5.5 Individuals
Individuals, objects of class Individual, consist of genotype, represented by
instances of the class Chromosome, and the information derived from it:

• raw and scaled fitness (Fitness): determined by a fitness evaluator and a
fitness scaling,

71

• information whether the individual is valid: a fitness evaluator can declare
an individual invalid if it cannot be evaluated,

• optionally information about the GE mapping process (the derivation of a
phenotype string, a DerivationInfo structure) and the phenotype string
itself (an instance of StringPtr).

Collections of individuals are stored in an IndividualCollection, which
defines convenience methods for setting properties of multiple individuals at once.
When only the genotype is manipulated, the strings of codons are represented by
CodonVector.

IndividualCollection

Chromosome

Codon
primitive int. type

1..*
1

CodonVector
std::vector<Codon> DerivationInfo

(optional)

StringPtr
(optional)

1..*

1
Chromosome.h:

IndividualCollection.h:

Individual.h:

CodonVector.h:
isValid : boolean
fitness : Fitness
scaledFitness: Fitness

Individual

Figure 6.2: Individual-related classes.

Figure 6.2 presents the relationships between these classes and the basic data
types along with the header files that provide them.

CodonVector is a shorthand for std::vector<Codon>, and can be used inter-
changeably. It is used to represent both fixed-length and variable-length
codon strings. Operators are applied to CodonVectors.

Chromosome represents an individual genotype as a string of codons (a Codon-
Vector). Note that, in contrast with the CodonVector itself, interface of
this class allows only read access to the genotype, which is sufficient for a
fitness evaluator or for output of individual information.

unsigned size() const;
returns the number of codons.

bool empty() const;
indicates whether the codon string is empty.

const CodonVector& codonVector() const;
returns a constant reference to the codon string.

72

DerivationInfo is a structure for storing information about the GE mapping,
the derivation of a phenotype string. It consists of three public fields:

unsigned wrapCount;
is the number of wrapping events. If the maximum number m has
been exceeded, it is set to m+ 1.

unsigned lastWrapCodonCount;
is the number of codons used after the last wrapping event, or the total
number of used codons if no wrapping event occurred.

unsigned treeHeight;
is the height of the derivation tree, the lowest valid value is therefore
1. If the maximum height h has been exceeded, it is set to h+ 1.

The structure is usually obtained from the stringDerivedUsingCodons()
method of a Grammar object (described in Section 6.5.7). The following
constructors and methods are provided for convenience:

DerivationInfo();
creates an invalid structure; isValid() will return true. This default
constructor can be used to create a placeholder instance if the inform-
ation is not available (for instance until an individual is evaluated).

DerivationInfo(unsigned w, unsigned c, unsigned h);
creates a valid structure with wrapCount set to w, lastWrapCodon-
Count set to c, and treeHeight set to h. The derivation tree height
h must be at least 1.

bool wrapsExceeded(unsigned maxWrapCount) const;
bool treeHeightExceeded(unsigned maxTreeHeight) const;

are convenience methods for determining whether the maximum num-
ber of wrapping events or the maximum derivation tree height were
exceeded. If the supplied maximum was also used as a constrain for the
GE mapping (Section 6.5.7) and the method returns false, it means
that the mapping process have failed, and the individual is therefore
invalid.

bool isValid() const;
indicates whether the structure has been properly initialised.

StringPtr is shorthand for yasper::ptr<std::string>, a reference counted
pointer to a dynamically allocated string. Dereferencing yields an instance
of std::string. It is used for phenotype strings derived using the GE
mapping, such as those returned by the stringDerivedUsingCodons()
method of a Grammar object (described in Section 6.5.7).

Individual represents an individual. Instances contains all information related
to a particular individual. You need to use this class only in a fitness eval-
uator, along with IndividualCollection. A fitness evaluator must set

73

fitness to a valid value and validity to true or false. Invalid individu-
als should be assigned the worst fitness possible. An individual is usually
declared invalid by the fitness evaluator when the GE mapping fails. An
application can extend the notion of validity to other areas as well, or not
use it at all. Invalid individuals are counted in each generation and excluded
from the generation statistics. Consequently validity affects two areas:

– output, which contains both invalid individual counts,

– fitness scalings that depend on fitness statistics, such as Goldberg’s linear
scaling (LinearFitnessScaling).

The class defines the following methods for getting properties of an indi-
vidual:

bool isValid() const;
Fitness fitness() const;

Until the validity and fitness values are assigned by the fitness evalu-
ator, they are set to false and FitnessUnknown.

const Chromosome& chromosome() const;
const StringPtr& phenotype() const;
const DerivationInfo& derivationInfo() const;

The meaning of these methods follows directly from the description of
the classes Chromosome, StringPtr, and DerivationInfo. When an
application does not set phenotype, a NULL pointer is returned; when
it does not set information about the GE mapping, an invalid Deriv-
ationInfo structure is returned. Note that only constant methods
(“getters”) are listed. This is because applications have only access
to constant individuals, and set their properties using an Individu-
alCollection. Initialisers and operators, on the other hand, operate
directly on CodonVectors.

IndividualCollection represents a collection of individuals, and defines con-
venience methods for setting properties of one or more individuals.

iterator
const_iterator

are iterators over the collection, and can be dereferenced to an Indi-
vidual object. Only the constant iterator is available to applications.

const_iterator begin() const;
const_iterator end() const;
const Individual& individual(unsigned i) const;
unsigned individualCount() const;

can be used to access the individuals in the container, either using
iterators or as an indexed array.

74

void setFitnessForIndividual(unsigned i,
Fitness f);

void setValidityForIndividual(unsigned i,
bool v);

void setPhenotypeForIndividual(unsigned i,
const StringPtr& ph);

void setDerivationInfoForIndividual(unsigned i,
const DerivationInfo& di);

can be used by the fitness evaluator to set fitness (Fitness), validity,
phenotype string (StringPtr), and information about the GE map-
ping (DerivationInfo) of an individual at index i.

void setPropertiesForIndividual(unsigned i,
bool valid, const StringPtr& phenotype,
const DerivationInfo& derivationInfo);

void setFitnessForIndividualsWhereUnknown(
const FitnessVector& fitness);

are convenience methods for setting multiple properties for a single
individual at index i, and for setting fitness (using a FitnessVector)
for all individuals with unknown fitness. Size of the fitness vector must
be equal to the number of individuals in the collection whose fitness is
FitnessUnknown.

6.5.6 Components
The algorithm elements and applications in AGE are implemented as separate
components. Interface for these components is defined in the form of abstract
classes, from which the components should be derived. Figure 6.3 shows the
hierarchy of these abstract classes, and the classes they are applied to. The dia-
gram also provides a complete listings of methods the concrete classes need to
implement. All methods are virtual, and with the exception of two methods that
have a default implementation (FitnessEvaluator::grammar() and descrip-
tion()), they are pure virtual. The virtual keywords and the =0 specifications
have, therefore, been omitted from the following text for conciseness.

A component must implement an appropriate interface: one of Initialiser,
CrossoverOperator, MutationOperator, FitnessEvaluator, FitnessScal-
ing, and Selector. If you want to make your component class available to a
command line tool built using the Tool class, you must also advertise its user-
configurable parameters by implementing the informal ArgObject interface dis-
cussed in Section 6.5.8.

All interfaces inherit from Cloneable (see Section 6.5.1), which consequently
must be implemented by all component classes. As a general rule, the clone()
method must not copy anything else than the user-supplied parameters (passed
to the constructor or as operator probabilities).

In addition to the abstract classes, the header Operator.h provides a con-
venience template for implementing operators CoinOperated<O>, which is also
described in this section.

To report errors from component class methods, use the exception classes
discussed in Section 6.5.2.

75

Selector.h:

setPopulationSize(…
)

reset()

Populable

setFitnessEvaluator(…
)

initialise(…
)

Initialiser
setProbability(…

)
hasZeroProbability()
hasValidProbability()

O
perator

init()
isInited()
evaluate(…

)
order()
range()
setsPhenotype()
setsDerivationInfo()
gram

m
ar()

descriptor()

 FitnessEvaluator
acceptsO

rder(…
)

acceptsRange(…
)

ignoresScale()
setPool(…

)
reset()
select(…

)
poolSize()

Selector
apply(…

)
applyToO

rder(…
)

applyToRange(…
)

 FitnessScaling

IndividualCollection

evaluates
is applied to

is applied to

FitnessVector

is applied to
initialises

FitnessEvaluator.h:
Operator.h:

Initialiser.h:
FitnessScaling.h:

selects from

apply(…
)

 M
utationO

perator

clone()

Cloneable

apply(…
)

 CrossoverO
perator

CodonVector

provides

Individual

describe(…
)

 IndividualDescriptor

describes

IndividualDescriptor.h:

F
igure

6.3:
A
bstract

classes
for

algorithm
elem

ents
and

applications.

Populable defines two methods common to Initialiser and Operator. Both
are applied to codon strings of single individuals or pairs of them to iter-
atively process a population. It is often desirable that the component can
distinguish between applications to different populations. Even more im-
portantly, when an operator or initialiser maintains internal state, it must
not carry it over to a different population. If your operator or initialiser is
stateless and you do not need such information, provide an empty imple-
mentation.

void setPopulationSize(unsigned aSize);
is called before applying the algorithm element to the first individual
of a population of size aSize. For crossover, aSize is the size of the
new population. Instances of a concrete class can use the method to
initialise their state, acquire resources, or prepare for a given number
of individuals.

void reset();
is called after applying the algorithm element to the last individual of
the population. Any internal state must be discarded.

Initialiser inherits from Populable, and defines an interface for initialisation
schemes.

void setFitnessEvaluator(const FitnessEvaluator& fe);
is called at least once before the initialiser is used. An initialiser can
retrieve whatever information it needs from the fitness evaluator. Un-
less called again before the initialiser is applied to another population
(before calling setPopulationSize()), the initialiser must retain the
information. The method is particularly useful for getting information
about the grammar used by the evaluator.

void initialise(Random& r,
CodonVector& chromosome) ;

is called sequentially for the number of individuals set by setPopu-
lationSize(). The initialised codon string must have at least one
codon.

Operator inherits from Populable, and is a common ancestor of Crossov-
erOperator and MutationOperator. It defines methods for setting and
checking probability the operator is applied with:

void setProbability(float p);
is called once before the operator is used. Unless called again before
the operator is applied to another population (before calling setPop-
ulationSize()), the operator must retain the probability. The prob-
ability must be also copied to a clone. The operator itself is responsible
for interpreting the probability

bool hasZeroProbability() const;
indicates whether the operator has zero probability.

77

bool hasValidProbability() const;
indicates whether the probability has been set using setProbabil-
ity().

CoinOperated<O> is a template class that inherits from the class O, which
should be either CrossoverOperator or MutationOperator. The template
provides an implementation of probability methods specified by Operator
using a BiasedCoin, and has empty implementations of the Populable
methods. Subclasses can still override the Populable methods if needed,
and use the following protected method to make decisions based on the
operator’s probability:

bool flipCoin(Random& r) const;
returns the result of BiasedCoin::flip().

Most operators implemented in AGE (see Section 6.3.4 and 6.3.5) are im-
plemented using this template, and can serve as examples.

CrossoverOperator inherits from Operator and defines an interface for cros-
sover operators:

bool apply(Random& r,
const CodonVector& parent0,
const CodonVector& parent1,

CodonVector* child0,
CodonVector* child1);

applies the operator to two parent codon strings, parent0 and par-
ent1, producing one or two offspring, pointed by child0 and child1.
If only one child is requested, a NULL is passed for child1. Any codons
already present in the pointed children must be ignored and discarded.
The parents are guaranteed to be at least one codon long. The offspring
produced by the operator must be at least one codon long.
The operator must be applied according to the random number gen-
erator r, an instance of Random, and the operator’s probability. If it
is effectively applied, the method returns true, otherwise it returns
false and does not modify the children. The number of effectively
performed operations is used for statistics.

MutationOperator inherits from Operator and defines an interface for muta-
tion operators:

unsigned apply(Random& r,
CodonVector& chromosome);

applies the operator to chromosome, a codon string.
The codon string is guaranteed to be at least one codon long, and must
be at least one codon long after application of the operator.
The operator must be applied according to the random number gen-
erator r, an instance of Random, and the operator’s probability. If it

78

is effectively applied, the method returns a non-zero number of muta-
tions, otherwise it returns zero and does not modify the codon string.
It is up to the implementation how exactly the number of mutation is
counted. The number of performed operations is used for statistics.

FitnessEvaluator defines an interface for fitness evaluators and provides a de-
fault implementation of two of its methods, grammar() and descriptor().
A fitness evaluator evaluates the fitness, and validity of individuals (in-
stances of Individual), which are passed to it as a collection (an instance
of IndividualCollection). Each evaluator is associated with an order-
ing and a range of fitness values. An evaluator can also, optionally, assign
phenotype strings and information about the GE mapping to the individu-
als. An evaluator can provide a descriptor, an object used to obtain a
human-readable description of individuals.

void init();
is called before the evaluator is used for the first time, either after
being constructed or cloned. It can be used to acquire resources and
to initialise data structures.

bool isInited() const;
indicates whether the evaluator has been initialised using init().

void evaluate(
IndividualCollection& population);

evaluates all fitness individuals in the collection (population) whose
fitness is FitnessUnknown. It must assign a (raw) fitness value and
validity to each of the evaluated individuals using the appropriate
methods of the IndividualCollection class. It can also, option-
ally, assign phenotype strings (dynamically allocated as StringPtr)
and information about the GE mapping (DerivationInformation) to
the individuals. In that case, it must do so consistently and advertise
it using the setsPhenotype() and setsDerivationInfo() methods.
A NULL phenotype string can be assigned to an invalid individual.
Individuals are passed as a collection instead of individually to allow
for optimisation. Each individual should, however, be evaluated inde-
pendently from other individuals in the collection.
The evaluate() method should throw Errors only when absolutely
necessary. Invalid individuals should not result in errors. Shortage of
resources should, unless it could have already been discovered in the
init() method.

FitnessOrder order() const;
FitnessRange range() const;
bool setsPhenotype() const;
bool setsDerivationInfo() const;

are used to advertise basic information about the evaluator: ordering
and range of its fitness value, and whether it assigns phenotype strings
and information about the GE mapping to individuals.

79

The following two methods have a default implementation, concrete sub-
classes can override them:

const Grammar::Ptr& grammar() const;
allows GE fitness evaluators to return their grammar. The returned
grammar is currently used by the RampedInitilisier, but may be
used for different purposes. The default implementation returns a
NULL pointer, and is intended only for evaluators that do not use a
grammar to perform the genotype-phenotype mapping. See Grammar
in Section 6.5.7.

const IndividualDescriptor::Ptr& descriptor() const;
allows fitness evaluators to provide a descriptor for individuals. The
default implementation returns a descriptor for hexadecimal repres-
entation of the codon string. See IndividualDescriptor for more
details.

Example: Section 6.6 gives a tutorial on implementing a fitness evaluator.

IndividualDescriptor defines an interface for obtaining a description of an in-
dividual, its human-readable representation used in the output. Descriptors
are not used as component classes on their own: instead, they are associ-
ated with FitnessEvaluators by means of their descriptor() methods.
Their interface consists of a single method:

std::string describe(
const Individual& individual) const;

returns a human-readable representation of the individual.

FitnessScaling defines an interface for fitness scalings. A fitness scaling can
be limited to specific orderings and ranges of fitness values, and it can
change the ordering and range of the values it is applied to, as outlined
in Section 2.2. Additionally it can use the supplied statistics to adjust its
parameters. A fitness scaling must be an immutable, stateless object.

void apply(FitnessVector& fitness,
FitnessOrder order,
FitnessRange range,

const FitnessStats& stats) const;
applies the scaling to the fitness values in the vector, which have
the specified ordering and range (FitnessOrder and Fitness-
Range), and which correspond to a population. The fitness statistics
(FitnessStats) can be used to adjust the parameters of the scaling.
Note that the statistics are taken only from valid individuals, while
fitness values of all individuals are scaled. This is intentional, as the
fitness values of invalid individuals would skew the statistics. If the
scaling needs, for some reason, the actual minimum, maximum, aver-
age or variance of all values, it should compute it from the fitness
vector.

80

Upon return the fitness vector contains the scaled values. The values
must be valid and must be within the range returned by applyToR-
ange(), their relative order should remain unchanged, except when
applyToRange() returns the opposite order, in which case their re-
lative order should be reversed. The size of the vector must not be
changed.

FitnessOrder applyToOrder(FitnessOrder order) const;
FitnessRange applyToRange(FitnessRange range) const;

return the order and range resulting from the application of the scaling
to the order and range specified by the parameters. When a given
order or range is not accepted by the scaling, the methods must return
FitnessOrderUnknown or FitnessRangeUnknown to indicate it and
prevent application to the fitness values.

Selector defines an interface for selection schemes. A selector does not work
with individuals, instead it selects elements from a vector of fitness values,
a pool. A selector can be limited to specific orderings and ranges of fitness
values, and can maintain internal state until it is attached to a different
pool.

bool acceptsOrder(FitnessOrder fo) const;
bool acceptsRange(FitnessRange fr) const;
bool ignoresScale() const;

indicate whether the selector accepts fitness values of a given ordering
and range, and whether it is concerned only about the relative order
of fitness values, and thus ignores their scale.

void setPool(const FitnessVector& fv,
FitnessOrder fo,
FitnessRange fr);

is called before a sequence of selections from a given pool
(FitnessVector) of fitness values, which have the specified ordering
and range (FitnessOrder and FitnessRange). The number of sub-
sequent selections may be lower or higher than the size of the pool,
which is guaranteed to be at least one.

void reset();
is called after a sequence of selections from a pool. Implementation
must ensure that no state is carried over to another pool.

unsigned select(Random& r);
performs selection from the previously set pool using the random num-
ber generator r, an instance of Random. Returns a valid zero-based
index in the pool.

unsigned poolSize() const;
returns zero if the pool has not been set or has been reset, otherwise
returns the size of the pool.

81

6.5.7 Grammatical evolution
In the previous sections we have already covered several classes that contain
support for grammatical evolution:

• the Individual and IndividualCollection classes, which define acces-
sors for a phenotype string (represented by a StringPtr) and information
about the GE mapping (represented by DerivationInfo),

• the FitnessEvaluator interface, which includes the methods setsPheno-
type(), setsDerivationInfo(), and grammar().

If your fitness evaluator is based on grammatical evolution, you should use
these APIs to provide information about the GE mapping. The mapping itself
is provided by the class BNFGrammar, which implements the Grammar interface.
The grammar objects are always allocated dynamically and accessed using the
Grammar interface, which makes it possible to replace the BNFGrammar class with a
class that implements a different genotype-phenotype mapping using a grammar.

The interfaces are defined in Grammar.h. The only implementation accessible
from BNFGrammar.h.

Optionally, a fitness evaluator can use the abstract and concrete classes for
generation and evaluation of source code in Lua and C. The interfaces are defined
in the headers GrammaticalCodeGenerator.h, GrammaticalCodeGenerator.h,
and CodeLauncher.h. The concrete classes for C are accessible from the headers
CGrammaticalCodeGenerator.h and CCodeLauncher.h. The concrete classes
for Lua are accessible from the headersLuaGrammaticalCodeGenerator.h and
LuaCodeLauncher.h. Section 6.6 gives a tutorial on these APIs.

Grammar is an interface for classes that perform a mapping from genotype
(CodonVector) to phenotype (StringPtr) using a grammar. The interface
consists of three pure virtual methods:

StringPtr stringDerivedUsingCodons(
const CodonVector& codons,
unsigned maxWraps,
unsigned maxTreeHeight,
DerivationInfo* derivationInfo

) const;
attempts to map the codon string codons to phenotype and returns a
dynamically allocated phenotype string, or a NULL pointer if the map-
ping fails. The derivation is constrained by the maximum number of
wrapping events maxWraps and the maximum height of the derivation
tree maxTreeHeight. Information about the mapping of the supplied
codon string is returned using the derivationInfo pointer in the form
of a DerivationInfo structure. If you do not need that information,
pass NULL as derivationInfo. Maximum derivation tree height can
be any positive number, or the constant DepthInfinite, in which
case the height is not limited. If either maxWraps or maxTreeHeight
is exceeded, the mapping fails, and a NULL pointer is returned.

82

CodonDerivation::Ptr randomDerivation(
Random& r,
unsigned desiredMinTreeHeight,
unsigned maxTreeHeight

) const;
attempts to generate a random derivation with the desired minimum
tree height and maximum tree height using a random number gener-
ator. The minimum indicates only a preference, while the maximum
is a hard limit. If there is no desired minimum, pass 0; if production
rules that can be used to derive a tree of arbitrary height are to be
preferred, pass the constant DepthInfinite. The result is returned as
a dynamically allocated object of a class that implements the Codon-
Derivation interface, which also defines the semantics of the return
value. This method is currently used only by the RampedInitilisier
component class.

unsigned minimumTreeHeight() const;
is the minimum tree height of a derivation. It is therefore the lowest
possible maxTreeHeight argument value for the randomDerivation()
method.

std::string description() const;
returns a human-readable representation of the underlying grammar.

GrammarChoiceVector is a vector of integers of arbitrary length that rep-
resents a derivation tree. It is defined as std::vector<GrammarChoice>,
where GrammarChoice is defined as Codon (although its values do not need
to correspond to codon values in any way). Each derivation tree should be
represented by a different GrammarChoiceVector. Vectors are different if
they differ in length or in value at any particular position.

CodonDerivation is an interface for retrieving information about a derivation.
The randomDerivation() method of the Grammar interface returns its res-
ult as a dynamically allocated object of a class that implements this inter-
face. The interface consists of three methods:

bool wasSuccessful() const;
indicates whether a derivation with given parameters was successfully
found.

const CodonVector& derivationCodons() const;
returns a codon string that results in a derivation with given paramet-
ers.

const GrammarChoiceVector& derivationChoices() const;
returns a unique representation of the derivation tree in the form of a
GrammarChoiceVector.

BNFGrammar is currently the only implementation of the Grammar inter-
face. Its stringDerivedUsingCodons() method performs the genotype-
phenotype mapping defined for grammatical evolution by O’Neill and Ryan

83

(2003) (see Section 2.4). Its randomDerivation() constructs such a ran-
dom derivation that can be used by RampedInitialiser (see Section 5.2),
and consequently for the “sensible” initialisation method as described by
O’Neill and Ryan (2003).
The mapping is carried out using a context-free grammar in Backus-Naur
form, which is passed to the constructor:

explicit BNFGrammar(const char* bnfCString);
constructs a grammar from its specification in Backus-Naur form rep-
resented as a C string. Lines, including the trailing one, must be
terminated with line feeds. The first nonterminal is interpreted as
the start nonterminal. Literals (terminals) can be both unquoted and
enclosed in double quotes. The two forms can be mixed unless they ap-
pear next to each other. Apart from the standard BNF syntax, single-
line comments prefixed with # and multi-line comments enclosed in /*
and */ are supported. Both kinds of comments must not be preceded
by non-white characters on the line where they begin.

6.5.8 Command line tool
The component classes can advertise their user-configurable parameters by im-
plementing the ArgObject informal interface, which is available in ArgUtils.h
along with the related classes. This is necessary for the component to be accessible
from the command line interface. The interface also separates the components
from the command line interface.

The command line interface itself is implemented by the Tool class, whose in-
terface is in Tool.h. The class provides several ways of customising the command
line tool, most importantly through addition of components that implement the
ArgObject interface.

subclasses
are added to

instantiates

provides

ArgUtils.h:

static:
 newObjectWithArg(…)
 argFactorySpec()

ArgObject
(informal interface)

label : C string
mandatoryArgCount

: unsigned

ArgFactorySpec

stringDescription
: C string

range or check

ArgSpec

ArgType
enumeration type

Tool

add<component class>()

ArgFactory
<component interface>

ArgObjectFactory
(abstract)

1..*
1

1

Tool.h:

1..*

Figure 6.4: Relationships and interactions between the command line tool related
classes.

Interactions between the Tool, a component class that implements ArgOb-
ject, and other related classes are shown in Figure 6.4. The Tool parses the

84

command line arguments and instantiates components with appropriate para-
meters. To achieve this, a component classes must provide two methods: one
that returns a specification of the component’s parameters and the correspond-
ing command line arguments, and one that instantiates a component according
to the arguments. These methods constitute the informal ArgObject interface.
We call it informal, as the C++ language does not have class objects, and con-
sequently does not support virtual class methods.

ArgObject is an informal interface of two static methods. The component
classes that implement it should by convention inherit from ArgObject,
which is defined as an empty class with an empty virtual destructor.

static const ArgFactorySpec& argFactorySpec();
returns a specification of the user-configurable parameters of the com-
ponent and the corresponding command line arguments in the form of
an ArgFactorySpec structure.

static X* newObjectWithArg(
const std::vector<ArgValue>& argv);

returns a new instance of the component. X is the interface imple-
mented by the component, one of Initialiser, MutationOperator,
CrossoverOperator, FitnessEvaluator, FitnessScaling, and Se-
lector (see Section 6.5.6). The vector of parsed arguments (of type
ArgValue) passed to this method complies with the specification re-
turned by argFactorySpec().
The method may throw a UserError if the arguments are incorrect
in a way that does not follow from their specification, for instance if
some of them have mutually exclusive values.

ArgType is an enumeration type that defines five types of arguments that can
be passed to a concrete class that implements ArgObject to instantiate an
object:
– UIntArg for an unsigned,
– FloatArg for a float,
– RangeArg for a Range, defined in Section 6.5.1,
– BoolArg for a bool,
– StringArg for a C string, pointed by a const char* pointer.

ArgSpec is a structure that specifies a single argument that can be passed to a
concrete class that implements ArgObject to instantiate an object. Argu-
ments have a human-readable label, a type (ArgType), and either a range
of valid values (for numeric types) or a string checking function pointer (for
strings) of the following type:

typedef bool (*StringCheck)(const char* str);
The return value of the pointed function indicates whether a given
string is accepted. (Defined inside the ArgSpec definition.)

85

The structure consists of six fields, the last four of which are grouped in a
union:

const char* label;
is a short human-readable description. Argument labels are printed in
the help for a command line tool, where they are immediately followed
by their range of valid values, with the exception of string labels. By
convention, labels for optional arguments are suffixed with the default
value in parenthesis, labels for string arguments are suffixed with a
colon, space, and a specification of possible values. The label can be
NULL, in which case only a type identifier is printed in the help.

Examples labels for numeric arguments: "factor(1.2)",
"tail length(0)".
Example labels for string arguments: "lang(lua): c|lua",
"bnf: path".

ArgType type;
is the type of the specified argument, according to which the following
union is interpreted:

union{
struct{ unsigned from;

unsigned upto; } uintRange;
struct{ float from;

float upto; } floatRange;
struct{ unsigned from;

unsigned upto; } rangeRange;
StringCheck stringCheck;

};
is, based on type, a range of valid unsigned values, or a range of
valid float values, or a range of valid Range values, or a pointer to a
string checking function. If the type is BoolArg, all fields are ignored.
The ranges are inclusive, and may be effectively unbounded if the
maximum or minimum value of a given type is supplied. The string
checking function pointer may be NULL if a string parameter does not
need to be checked for validity.

When an argument supplied from the command line is interpreted by AGE,
it is parsed according to its type; if it is numeric, it is then checked against
the range of valid values; if it is a string, it is then checked using the string
checking function; finally, it is stored in an ArgValue and, together with
other arguments, passed to the newObjectWithArg() method of a class
that implements ArgObject.

ArgSpecVector is a shorthand for std::vector<ArgSpec>, and can be used
interchangeably. It forms a part of the ArgFactorySpec structure.

ArgValue is a structure for storing argument values specified by ArgSpec. It
consists of five mutually exclusive fields:

86

union{ unsigned uintValue;
float floatValue;
bool boolValue;
Range rangeValue; };

std::string stringValue;
which are always interpreted in the context of an argument type, which
determines the applicable field. (The stringValue field is excluded
from the union because its type has a constructor. The rangeValue
field is actually of a type different from Range defined in Section 6.5.1,
but can be assigned Range values and converted to Range.)

ArgFactorySpec is a structure that specifies a factory for objects of a concrete
class that implements ArgObject. Each component class accessible from a
command line has its factory defined by the three fields of this structure:

const char* label;
is a mandatory label for the argument of the factory. It should be a
short identifier of the component class, unique within a given compon-
ent type. The label is entered by the user to identify a component.
The value "none" is reserved.
Example: The bit "bit" label identifies the BitLevelMutation class,
the "codon" label identifies the BitLevelMutation class, the "one-
point" label identifies the OnePointCrossover class. See ?? for labels
of other components already implemented in AGE.

unsigned mandatoryArgCount;
is the number of mandatory arguments. It must be less than or equal
to the size of the argSpecs vector.

ArgSpecVector argSpecs;
is a vector of ArgSpec structures, one for each argument.

A structure of this type is returned by the argFactorySpec() method of
a class that implements ArgObject.
Example: Listing 6.4 shows how the structure is constructed by the com-
ponent class for Goldberg’s linear scaling, LinearFitnessScaling.
?? describes the forms of arguments for all implemented components from
the user’s point of view and explains the handling of mandatory and op-
tional arguments. The constructions of the corresponding ArgFactorySpec
structures can be found in the source code of the components.

ArgObjectFactory is an abstract superclass of instances of the ArgFact-
ory<X> template. Instead of subclassing ArgObjectFactory, specialise
the ArgFactory<X> template.

ArgFactory<X> is a template class, a subclass of ArgObjectFactory. It is
used to create a factory for components of a given type X, one of Ini-
tialiser, CrossoverOperator, MutationOperator, FitnessEvaluator,
FitnessScaling, and Selector. The template class defines a default con-
structor and a single method template:

87

const ArgFactorySpec& LinearFitnessScaling :: argFactorySpec(){
static ArgFactorySpec spec = { /*label:*/ "lin",

/*mandatoryArgCount:*/ 0,
/*argSpecs:*/ ArgSpecVector() };

if(spec.argSpecs.empty()){
ArgSpec as;
as.label = "factor(1.2)";
as.type = FloatArg;
as.floatRange.from = 1.0F;
as.floatRange.upto = FLT_MAX;
spec.argSpecs.push_back(as);

}
return spec;

}

Listing 6.4: Example of ArgFactorySpec construction in an argFactorySpec()
method. One optional argument, labelled "factor(1.2)", is specified.

ArgFactory<X>();
is the default constructor. The factory is actually constructed by the
subsequent calls of add<Y >().

void add<Y >();
adds a concrete class Y that implements ArgObject to the factory.
Conformance to the informal interface is enforced at compile time.

If two components with the same ArgFactorySpec label are added,
the method throws an Error.

Instances of ArgFactory<X> are used when constructing a Tool object.
The classes added to the factories are then accessible from the command
line tool based on the Tool object.

Example: Listing 6.5 includes the construction of a factory for each of the
component types.

Tool is used to build a command line tool with the user interface described in
Section 6.3. The component classes that will be accessible from the com-
mand line tool are added to factories (see ArgFactory<X>), the factories
for each component type are then passed to the constructor of Tool, to-
gether with default arguments for each factory. The Tool object then takes
over, processes command line arguments, runs evolutionary algorithms, and
outputs results.

The class defines a constructor and three methods:

88

Tool(const ArgFactory<CrossoverOperator>& crossovers,
const ArgFactory<MutationOperator>& mutations,
const ArgFactory<Initialiser>& initialisers,
const ArgFactory<FitnessEvaluator>& evaluators,
const ArgFactory<FitnessScaling>& scalings,
const ArgFactory<Selector>& selectors,
const char* defaultXvrArg,
const char* defaultMtnArg,
const char* defaultInitArg,
const char* defaultEvalArg,
const char* defaultScaleArg,
const char* defaultSelArg);

constructs a Tool object with given factories and default arguments.
The default arguments are exactly in the form in which they would
be entered from the command line as described in ??, except that
they do not contain the option prefix (-X, -M, -I, -A, -s, or -S). It
is also possible to specify an empty string ("") as a default argument
for mutations and fitness scalings, defaultMtnArg and defaultS-
caleArg. Any of the default arguments may be NULL, in which case
there is no default argument, and the corresponding option is then
mandatory.
The constructor throws an Error if any of the default arguments is
invalid.

void runOrFailWithArgs(
int argc, char * const argv[]) const;

runs the tool with given command line arguments. You can either
directly pass the standard argc and argv arguments of the main()
function, or preprocess them as needed.
The method may call exit(), throw an Error or a UserError.

void fprintUsage(FILE* file) const;
prints help to a given file descriptor.

void logUsageAndFail() const;
prints help to the standard error stream, and then terminates the
program with the standard EXIT_FAILURE status.

Example: Listing 6.5 shows a simple main() function built around a Tool
object. The main() in the main.c source of the demonstration command
line tool is also implemented using Tool.

89

#include "App-RegressionFitnessEvaluator.h" /* application */
#include "Elements.h" /* algorithm elements */
#include "Tool.h"
#include "Error.h" /* Error, UserError */

using namespace AGE;

int main(int argc, char * const argv[]){
try{ /* try and catch(Error), catch(UserError) */

ArgFactory<CrossoverOperator> crossoverFactory;
crossoverFactory.add<OnePointCrossover>();

ArgFactory<MutationOperator> mutationFactory;
mutationFactory.add<BitMutation>();

ArgFactory<Initialiser> initFactory;
initFactory.add<RandomInitialiser>();
initFactory.add<RampedInitialiser>();

ArgFactory<FitnessEvaluator> evalFactory;
evalFactory.add<RegressionFitnessEvaluator>();

ArgFactory<FitnessScaling> scalingsFactory;
evalFactory.add<LinearFitnessScaling>();

ArgFactory<Selector> selectorFactory;
selectorFactory.add<RouletteWheelSelector>();

Tool(crossoverFactory, mutationFactory, initFactory,
evalFactory, scalingsFactory, selectorFactory,
"one-point", "", NULL,
"reg", "lin(1.5)", "roulette"

).runOrFailWithArgs(argc, argv);

}catch(const UserError& failCause){
failCause.logAndFail("AGE failed due to the following error");

}catch(const Error& failCause){
failCause.logAndFail(

"AGE failed due to the following internal error");
} /* try and catch(Error), catch(UserError) */
return 0;

}

Listing 6.5: Example main() function of a command line tool built using the Tool
class. The default arguments are one-point for crossover, no mutations,
reg for application, lin(1.5) for scalings, roulette for selector. No
default argument (NULL) is supplied for initialiser: the corresponding
command line option will be mandatory. Any errors that could occur are
caught and handled.

6.6 Tutorial for application developers
In this section, we will implement the Santa Fe ant trail application (used for
experiments in Section 8.3) using the APIs available in AGE. Additionally, we
will employ the helper classes GrammaticalCodeGenerator, LuaGrammatical-
CodeGenerator, and LuaCodeLauncher, which facilitate the evaluation in Lua.
These classes, and there counterparts for the C language, are part of the AGE
library, but their API is defined only informally in this tutorial. Although their
interfaces are simple, it is best understood how to use them from an example.
Additional documentation is provided in comments in their header files named
classname.h.

Before writing the fitness evaluator, we need to implement a model class that
will encapsulate the domain-specific data and procedures. This is not the only
way to build an application, but it makes for a better design and allows us to
separate the part of implementation that can be written without the use of the
AGE APIs.

Model class
The implementation of our model class, named AntTrail, follows directly from
the description of the ant trail application in Section 8.3. Namely, it has the
following methods:

void left();
void right();
void move();
bool foodAhead() const;
unsigned foodLeft() const;
unsigned foodEaten() const;
unsigned timeLeft() const;
void reset();

that correspond to the ant’s actions, indicate the number of food pieces eaten
and left, and reset the model to its initial state. Such a class can be implemented
without any knowledge of the AGE APIs, and we will therefore leave its imple-
mentation as an exercise to the reader. The implementation used for experiments
in Section 8.3 can be found in the files App-AntTrail.h and App-AntTrail.cpp,
which are part of the AGE demonstration tool.

As the concrete subclasses of FitnessEvalautor must support cloning, the
model class must also support either cloning or copying. In this case we will opt
for cloning and dynamic allocation using a factory method:

static AntTrail* newAntTrail(const char* mapCStr,
unsigned time);

AntTrail* clone() const;

The factory method takes two arguments: the ant trail map as a C string, and
a time limit. We will also define a constant that contains a C string representation
of the standard Santa Fe ant trail map: AntTrail::santaFeMap.

91

As we want to evaluate individuals in the Lua language, the next step is to
prepare the model class to be accessible from Lua. Another option would be to
implement the whole model in the target language, but Lua makes it relatively
easy to interface with C functions. Additionally, we will benefit from faster
evaluation of compiled code.

Because Lua cannot work directly with C++ objects, we will need to write
static equivalents of the above methods. As our model class is dynamically alloc-
ated, we can assign a unique identifier to each instance and provide a mapping
from the identifiers to instance pointers. The identifier of a model object can be
retrieved and then passed as an argument to the static methods, which will call
an equivalent method on the designated object:

int handle() const; /* a unique identifier */
static void left(int handle);
static void right(int handle);
static void move(int handle);
static int foodAhead(int handle);
static int foodLeft(int handle);
static int foodEaten(int handle);
static int timeLeft(int handle);
static void reset(int handle);

We have also replaced the unsigned type with int, as unsigned integers are
not supported in Lua. Almost any scripting language with a C binding would
require these changes.

Fitness evaluator and the helper classes
Now that we are done with the model class, let’s proceed to the fitness evaluator.
In addition to the FitnessEvaluator interface described in Section 6.5.6, it will
also implement the informal ArgObject interface described Section 6.5.8, so that
it is accessible from the command line tool.

We will subclass the GrammaticalCodeFitnessEvaluator abstract class
(defined in GrammaticalCodeFitnessEvaluator.h), which implements sev-
eral FitnessEvaluator methods using a GrammaticalCodeGenerator and a
CodeLauncher.

A GrammaticalCodeGenerator maps individuals to phenotype using a gram-
mar and generates source code in a certain language. AGE contains two concrete
subclasses: CGrammaticalCodeGenerator for C and LuaGrammaticalCodeGen-
erator for Lua. In this tutorial we will use the Lua class, defined in LuaGram-
maticalCodeGenerator.h

A CodeLauncher takes the code generated by a GrammaticalCodeGener-
ator, executes it (compiling it if needed), and makes it possible to send input
to the resulting program and receive its output. AGE contains two concrete
subclasses: CCodeLauncher for the compiled C code and LuaCodeLauncher for
the interpreted Lua code. In this tutorial we will use the Lua class, defined in
LuaCodeLauncher.h.

The GrammaticalCodeFitnessEvaluator class has one pure abstract
method (in addition to several methods inherited from the FitnessEvaluator
interface), which we will have to implement:

92

private:
virtual FitnessVector evaluateLivePopulation(

LivePopulation& livePopulation) = 0;

LivePopulation is a “running” program retrieved from a CodeLauncher,
composed of individual functions, functions that represent the evaluated indi-
viduals. It has the following interface:

unsigned size();
void perform(void* retVals, ...);

The size() method returns the number of individuals. The perform()
method executes the program with the specified input (supplied as variadic ar-
guments of predefined types) and returns the output using the retVals pointer,
which must point to a buffer for at least size() values of a predefined type. Each
of the individual functions receives the parameters, and contributes to the output
with its return value, which represents output of an individual. The types will
be discussed later.

The evaluateLivePopulation() method must return a vector of fitness val-
ues, one for each individual in the live population.

Let’s take a look at the methods the GrammaticalCodeFitnessEvaluator
class implements for us:

protected:
void initWithGeneratorAndLauncher(

CodeGenerator::APtr& cg,
CodeLauncher::APtr& cl);

public:
GrammaticalCodeFitnessEvaluator(

const Grammar::Ptr& g, unsigned maxW);
virtual void evaluate(IndividualCollection & population);
virtual bool setsPhenotype() const;
virtual bool setsDerivationInfo() const;
virtual const Grammar::Ptr& grammar() const;
unsigned maxWraps() const;
virtual const IndividualDescriptor::Ptr&

descriptor() const;

The virtual methods implement the FitnessEvaluator interface. The class
takes care of setting all properties of individuals including the information about
the GE mapping and the phenotype, the methods setsPhenotype() and sets-
DerivationInfo() consequently return true.

The evaluate() method will use a code generator and a code launcher to
transform the individuals to a program represented by a LivePopulation object,
which will be then passed to our evaluateLivePopulation() method. The code
generator and code launcher to be used are passed to the initialisation method
initWithGeneratorAndLauncher() beforehand.

The constructor takes two parameters: a pointer to the grammar, and the
maximum number of wrapping events. The value of these parameters can be later
retrieved using the grammar() and maxWraps() methods. The class also defines
a descriptor() method (see IndividualDescriptor in Section 6.5.6). The
descriptors return a description equivalent to the phenotype of a given individual.

93

Implementing the fitness evaluator
We have described the abstract base class GrammaticalCodeFitnessEvalu-
ator, our evaluator will inherit from. Let’s name the concrete fitness evaluator
class AntTrailFitnessEvaluator. To complete its implementation, we need to
provide a evaluateLivePopulation() method, and the methods in the Fit-
nessEvaluator interface that are not implemented by GrammaticalCodeFit-
nessEvaluator:

virtual AntTrailFitnessEvaluator* clone() const;
virtual void init();
virtual bool isInited() const;
virtual FitnessOrder order() const;
virtual FitnessRange range() const;

and the methods in the ArgObject interface:

static FitnessEvaluator* newObjectWithArg(
const std::vector<ArgValue>& argv);

static const ArgFactorySpec& argFactorySpec();

We will start with the methods related to the creation of instances: clone()
and newObjectWithArg(). Obviously both will need to call a constructor, the
former constructs objects based on parameters of an existing objects, the latter
based on user-supplied parameters. For the purposes of this tutorial, the con-
structor will have just one parameter, a time limit. The actual implementation
in the AGE demonstration tool has additional multiple parameters.

Listing 6.6 shows and explains the constructor, the destructor and the declar-
ation of the instance variables. Now that we have it, the implementation of the
clone() method and the ArgObject interface is straightforward, as you can see
in Listing 6.7.

So far we have implemented the model class, and a fitness evaluator that can
be instantiated using the command line interface of AGE, and cloned. Now we
are approaching the evaluation itself. We need to provide a glue between the
model’s static methods and Lua. To this purpose we define two macros of the
form AGE_LUA_WRAP_type_FUN(fun,luaFun). The macros expand to a definition
of a function luaFun that pops arguments off the Lua stack, passes them to the
fun function, and pushes the return value onto the Lua stack. One is for functions
of type int f(int), one is for functions of type void f(int), see Listing 6.8.
(The Lua 5.1 Reference Manual describes the convention for calling C functions
in more details, search for lua_CFunction.)

With the aid of these two macros, we will prepare a vector containing inform-
ation about these functions to be used by the LuaCodeLauncher as can be seen
in Listing 6.9. The elements of the vector are of type LuaFunction, which is a
simple structure defined in LuaCodeLauncher.h:

struct LuaFunction{
typedef int (*LuaFunctionPtr) (lua_State *L);
const char* name;
LuaFunctionPtr function;

};

94

As the last step, we will implement the core methods of our fitness evaluator
init(), evaluateLivePopulation(), and the related methods isInited(), or-
der(), and range().

In the init() method we will take the following preparatory steps for fitness
evaluation:
(1) Set up the parameter types and return types for the individual functions:

These types will be used later, when we invoke the LivePopulation::perform()
method. In this case we want to pass a single parameter h, the trail handle
of type int, and receive a number of pieces of food left, again of type int.

(2) Set up the head and tail of the individual functions to achieve the following
form:

reset(h)
while (timeLeft(h) ~= 0) do

(individual's phenotype)
end
return foodLeft(h)

(3) Create a LuaGrammaticalCodeGenerator using the above parameters, the
grammar, and the maximum number of wrapping events. We could also
supply a common header for all individuals: a piece of Lua code with functions
that can be called from each individual. However, we do not need it in this
case, as the whole model is implemented in C++.

(4) Create a LuaCodeLauncher using the vector of model functions defined
earlier, and inform it about the types from step 1.

(5) Initialise our base class using the code generator and code launcher created
above.

(6) Set the inited instance variable to true.
In the evaluateLivePopulation() method we will simply perform the indi-

vidual functions of a LivePopulation and return the results (numbers of pieces
of food left by each individual) as a vector of fitness values.

The implementation of these methods and the trivial methods isInited(),
order(), and range() is shown in Listing 6.10.

We have completed the implementation of a fitness evaluator. To make it
accessible from a command line tool, its class has to be added to a factory used
to construct a Tool object, as shown in Listing 6.5 in Section 6.5.8.

Final notes
In this tutorial we have used the convenience classes for evaluation in Lua (Gram-
maticalCodeFitnessEvaluator, LuaGrammaticalCodeGenerator, and Lua-
CodeLauncher). Instead we could use their counterparts for C (CGrammatical-
CodeGenerator, and CCodeLauncher), or we could switch between the two ver-
sions based on parameters.

Alternatively we could do without these classes, map the genotype to phen-
otype directly using the API described in Section 6.5.7, evaluate the phenotype
in our language of choice, and directly assign the results to the individuals using
the API described in Section 6.5.5.

95

#include "GrammaticalCodeFitnessEvaluator.h" /* base class */
#include "ArgUtils.h" /* ArgObject */
#include "BNFGrammar.h"
#include "yasper.h" /* Grammar::Ptr */

class AntTrail; /* forward declaration of the model class */

class AntTrailFitnessEvaluator
: public GrammaticalCodeFitnessEvaluator, public ArgObject{

bool inited;
unsigned timeLimit;
AntTrail* trail;

public:
AntTrailFitnessEvaluator(unsigned time)
: GrammaticalCodeFitnessEvaluator(defaultGrammar(), /*maxWraps:*/3),

inited(false),
timeLimit(time)
trail(AntTrail::newAntTrail(AntTrail::santaFeMap, time))

{ }

static const Grammar::Ptr& defaultGrammar(){
static Grammar::Ptr defaultG;
if(! defaultG){

try{
defaultG = Grammar::Ptr(new BNFGrammar(

"<code> ::= <line> | <code> <line>\n"
"<line> ::= <condition> | <op>\n"
"<condition> ::= if (foodAhead(h)==1) then <line> else <line> end\n"
"<op> ::= left(h) | right(h) | move(h)\n"));

}catch(const Cause& e){
throw Error("AntTrailFitnessEvaluator: BNFGrammar error", e);

}
}
return defaultG;

}

~AntTrailFitnessEvaluator(){
delete trail;

}

/* Other methods will go here. */
};

Listing 6.6: A skeleton of the AntTrailFitnessEvaluator class. The inited in-
stance variable will be later used the init() and isInited() methods.
To simplify the code, both the grammar and the maximum number of
wrapping events are hard-coded, and the methods defined inline. Note
that the grammar includes an h parameter for each of the ant’s actions,
we will need that to pass the trail handle to the static methods of the
AntTrail class. The time limit is stored in an instance variable for later
use by the clone() method.

AntTrailFitnessEvaluator* clone() const{
return new AntTrailFitnessEvaluator(timeLimit);

}

const ArgFactorySpec& argFactorySpec(){
static ArgFactorySpec spec = {

"ant", /*mandatoryArgCount:*/ 0,
ArgSpecVector() };

if(spec.argSpecs.empty()){
ArgSpec as;
as.label = "time(600)";
as.type = UIntArg;
as.uintRange.from = 0;
as.uintRange.upto = UINT_MAX;
spec.argSpecs.push_back(as);

}
return spec;

}

FitnessEvaluator* newObjectWithArg(const std::vector<ArgValue>& argv){
if(argv.size() == 0)

return new AntTrailFitnessEvaluator(/*default time limit:*/ 600);

assert(argv.size() == 1);
return new AntTrailFitnessEvaluator(argv.at(0).uintValue);

}

Listing 6.7: Implementation of the ArgObject and Cloneable interfaces in the
AntTrailFitnessEvaluator class. A single parameter can be supplied
from the command line, a time limit with a default value of 600.

#include "lua.hpp" /* Lua interface for C++ */

#define AGE_LUA_WRAP_INT_TO_INT_FUN(FUN, LFUN) \
static int LFUN(lua_State* lua); \
static int LFUN(lua_State* lua){ \

lua_pushinteger(lua, FUN(lua_tointeger(lua, -1))); \
return 1; \

}

#define AGE_LUA_WRAP_INT_TO_VOID_FUN(FUN, LFUN) \
static int LFUN(lua_State* lua); \
static int LFUN(lua_State* lua){ \

FUN(lua_tointeger(lua, -1)); \
return 1; \

}

Listing 6.8: Macros for making C functions accessible from Lua.

#include "App-AntTrail.h" /* AntTrail, the model class */

AGE_LUA_WRAP_INT_TO_VOID_FUN(AntTrail::left, l_left)
AGE_LUA_WRAP_INT_TO_VOID_FUN(AntTrail::right, l_right)
AGE_LUA_WRAP_INT_TO_VOID_FUN(AntTrail::move, l_move)
AGE_LUA_WRAP_INT_TO_INT_FUN(AntTrail::foodAhead, l_foodAhead)
AGE_LUA_WRAP_INT_TO_INT_FUN(AntTrail::foodLeft, l_foodLeft)
AGE_LUA_WRAP_INT_TO_INT_FUN(AntTrail::foodEaten, l_foodEaten)
AGE_LUA_WRAP_INT_TO_INT_FUN(AntTrail::timeLeft, l_timeLeft)
AGE_LUA_WRAP_INT_TO_VOID_FUN(AntTrail::reset, l_reset)

const LuaFunction AntTrailFitnessEvaluator :: antTrailFunctions[] = {
{"left", &l_left}, {"right", &l_right},
{"move", &l_move}, {"foodAhead", &l_foodAhead},
{"foodLeft", &l_foodLeft}, {"foodEaten", &l_foodEaten},
{"timeLeft", &l_timeLeft}, {"reset", &l_reset}

};

const std::vector<LuaFunction>
AntTrailFitnessEvaluator :: antTrailFunctionVector(
antTrailFunctions, antTrailFunctions +
sizeof(antTrailFunctions)/sizeof(antTrailFunctions[0])

);

Listing 6.9: Wrapping the static methods and putting them in a vector together with
the names under which they will be accessible from Lua.

#include "LuaGrammaticalCodeGenerator.h"
#include "LuaCodeLauncher.h"

void init(){
CodeGenerator::APtr cg;
CodeLauncher::APtr cl;
const CodeType returnType(CodeTypeInt);
const std::vector<CodeType> paramTypes(1, CodeTypeInt);
const std::vector<const char*> paramNames(1, "h");

cg = CodeGenerator::APtr(new LuaGrammaticalCodeGenerator(
grammar(),
maxWraps(),
/*common header:*/ "",
paramNames,
/*head:*/

"\treset(h)\n"
"\twhile (timeLeft(h) ~= 0) do\n",

/*tail:*/
"\n"
"\tend\n"
"\treturn foodLeft(h)"));

cl = CodeLauncher::APtr(new LuaCodeLauncher(
LuaLivePopulation::UseUnsafeMath,
antTrailFunctionVector));

cl->setIndividualTypes(returnType, paramTypes);
initWithGeneratorAndLauncher(cg, cl);
inited = true;

}

bool isInited() const{
return inited;

}
FitnessOrder order() const{

return LowerBetter;
}
FitnessRange range() const{

return FitnessNonnegative;
}

FitnessVector evaluateLivePopulation(LivePopulation& livePopulation){
std::vector<int> foodLeft(livePopulation.size());

livePopulation.perform(& foodLeft.front(), trail->handle());

return FitnessVectorFromInts(FitnessNonnegative, foodLeft);
}

Listing 6.10: Implementation of the AntTrailFitnessEvaluator core using Lua-
GrammaticalCodeGenerator and LuaCodeLauncher.

6.7 Licence
AGE is opensource and can be used for personal,
academic, and commercial purposes at no cost.

AGE itself is licensed under the terms of the
standard three-clause BSD licence. Its full text
follows: BSD Daemon2

Copyright © 2008–2010, Adam Nohejl.
All rights reserved.
Redistribution and use in source and binary forms, with or without modi-
fication, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the doc-
umentation and/or other materials provided with the distribution.

• The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.

This software is provided by the copyright holders and con-
tributors “as is” and any express or implied warranties, includ-
ing, but not limited to, the implied warranties of merchant-
ability and fitness for a particular purpose are disclaimed.
In no event shall the copyright owner or contributors be li-
able for any direct, indirect, incidental, special, exemplary,
or consequential damages (including, but not limited to, pro-
curement of substitute goods or services; loss of use, data,
or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way
out of the use of this software, even if advised of the possib-
ility of such damage.

The text of this thesis is licensed under the Creative Commons Attribution–
Noncommercial–No Derivative Works 3.0 Czech Republic Licence, see page 5.

This distribution also includes other software distributed under the BSD li-
cence or similarly liberal licences, namely:

Lua: A lightweight scripting language.
Copyright © 1994–2008 Lua.org, PUC-Rio.
MIT licence.
Full copyright and licence in src/lua-5.1.4/COPYRIGHT.

2BSD Daemon Copyright © 1988, by Marshall Kirk McKusick. All Rights Reserved. The
BSD Daemon is the mascot of the Berkeley Software Distribution, a major opensource Unix
distribution. AGE uses tidbits of opensource code from modern BSD descendants for portab-
ility and itself has the BSD licence, commonly used for opensource software developed in the
academic environment.

100

getopt(): Standard command option parsing.
Copyright © 1987, 1993, 1994 The Regents of the University of California.
From Apple Darwin Libc.
BSD licence (three-clause).
Full copyright and licence in src/getopt.c.

popen(): A bidirectional, thread-safe implementation of popen().
Copyright © 1988, 1993 The Regents of the University of California.
Based on code from NetBDS. Modified by Adam Nohejl.
BSD licence (three-clause).
Full copyright and licence in src/PopenFix.c.

pstdint.h: A portable stdint.h.
Copyright © 2005–2007 Paul Hsieh.
BSD licence (three-clause).
Full copyright and licence in src/pstdint.h.

random_r: An improved random number generation package.
Copyright © 1983 Regents of the University of California.
Based on code from uClibc. Modified by Adam Nohejl.
BSD licence (three-clause).
Full copyright and licence in src/Random.c.

yasper (a modified version of): A non-intrusive reference counted pointer.
Copyright © 2005–2007 Alex Rubinsteyn.
Modified by Adam Nohejl.
zlib/libpng licence.
Full copyright and licence in src/yasper.h.

101

Chapter 7

Developer Documentation

Because AGE is a framework, not a closed tool, its developer documentation
overlaps with its user documentation. In fact, we have documented its design
in Chapter 5, and its principal classes and the interactions between them in
Chapter 6. I believe that what is left is best documented by source code com-
ments.

In this chapter we will cover two places, where the implementation needs more
than a few lines of a commentary. The following notes will be useful for those
who would either like to modify the source code, or verify that it works correctly.

7.1 Selection schemes
Tournament selection (described in Section 2.6.3) is possibly one of the few al-
gorithm elements we have mentioned whose implementation does not follow dir-
ectly from its definition. If we pick the competitors for the tournament without
replacement, we are essentially shuffling, or permuting, the population. There is
a very simple and correct way to do this. The algorithm, called sometimes the
Fischer-Yeats shuffle, is described and explained by Cormen et al. (2001, p. 103).
I reproduce their pseudocode for shuffling an array A:

Randomize-In-Place(A)
1 n← length[A]
2 for i← 1 to n
3 do swap A[i]↔ A[Random(i, n)] � a ≤ Random(a, b) ≤ b

As can been seen, after iteration i the element A[i] is never altered. This fact
can be used for picking only a certain number n of random elements: tournament
competitors. It is also useful to realise that the algorithm is correct regardless
of the initial order of the array A: we do not need to restore the order for each
tournament selection.

Some other seemingly flawless methods for shuffling are not correct (such as
Permute-With-All constructed as a non-working example by Cormen et al.,
2001, exercise 5.3-3, p. 105). One such method is used for tournament selection
in the SGA-C environment (see footnote 3 on page 33). AGE implements tourna-
ment selection using the correct shuffling algorithm taking advantage of the two
above mentioned facts.

102

Roulette-wheel selection, on the other hand, is very simple to implement cor-
rectly. One should, however, realise that it can be implemented using binary
search reducing it from O(n) to O(log n) time. This is the way it is implemented
in AGE.

7.2 Fast bit-level mutation
In Section 5.4, we have argued that bit-level mutation could be implemented
efficiently using a statistic approximation, very likely eliminating the need for
codon-level mutation. We will explain how exactly fast bit-level mutation is
implemented in AGE, and compare its performance to the naïve, slow bit-level
implementation and codon-level mutation.

The decision whether to mutate a single bit follows a Bernoulli distribution
with parameter pm (the probability of mutation), the number of unaltered bits
until the next mutation follows a geometric distribution with the same parameter,
symbolically:

X ∼ Geom(pm)
f(k) = P [X = k] = (1− p)kp

F (k) =
k∑
i=0

f(i) =
k∑
i=0

(1− p)ip = 1− (1− p)k+1

where f is the probability mass function, and F is the cumulative distribution
function, both defined as discrete, which is sufficient for our needs. Random
variates from this distribution can be and efficiently generated using the inversion
method. The method is described in more details by Devroye (1986, ch. 2, ch. 3)
along with a proof of its correctness. The gist of it is that if we appropriately
define F−1, an inverse of F , then F−1(U) follows the distribution defined by F ,
provided that the random variable U is uniformly distributed over [0, 1]. This
can be directly used to generate a random variate with distribution F if there is a
computational formula for F−1. The inverse of a distribution F for the geometric
distribution Geom(pm) can be computed easily:

F−1(u) = log(1− u)
log(1− pm)

To generate a random variate k of a geometric distribution with parameter
pm, which is from {0, 1, 2, . . .}, we use an adjusted formula:

k =
⌊

log(1− u)
log(1− pm)

⌋
where u is a random variate from the uniform distribution over [0, 1).1 This

formula is defined, and correct, for u ∈ [0, 1), and pm ∈ (0, 1). The special cases
pm ∈ {0, 1} do not actually require random variate generation.

1The formula I use is slightly different from the one presented by Devroye (1986): dlog(1−
u)/ log(1− p)e, further simplified to dlog(u)/ log(1− p)e under the assumption that 0 < u < 1,
uniformly distributed. The difference, however, is only technical because (1) I use u ∈ [0, 1), as
such an uniform random variate can be more conveniently generated, (2) I define X ∼ Geom(p)
as having values from {0, 1, 2, . . .}, not {1, 2, 3, . . .}.

103

This value k, the number of bits until the next mutated bit, can be generated
in constant time, by calling the random number generator once to generate u and
then applying the above formula. The computational complexity of applying the
mutation to a string of n bits with probability pm is then in average O(npm), while
using the naïve bit-by-bit implementation it is O(n). Obviously, the complexity of
codon-level mutation is O(n/c), where c is the codon size. All three mutations are
asymptotically equal, but the fast bit-level mutation will be faster by a constant
factor for a sufficiently low probability of mutation pm.

It is also worth noting that the geometric distribution is memoryless, which
means that it does not matter whether we draw a new value k and start counting
over again at each chromosome boundary, or whether we apply the mutation as
if the whole population was concatenated into a single giant chromosome. In
both cases the distribution of the number of bits between each two consecutive
mutations will be geometric. In AGE, the one-giant-chromosome approach is
used. It is slightly more difficult to implement, but can reduce the number of
RNG calls significantly for low mutation rates and short chromosomes.

8-bit codons:
pm naïve bit-level fast bit-level codon-level
1 % 1.50 s (1×) 0.09 s (0.06×) 0.18 s (0.12×)
2 % 1.51 s (1×) 0.19 s (0.12×) 0.18 s (0.12×)
5 % 1.56 s (1×) 0.46 s (0.29×) 0.19 s (0.12×)

31-bit codons:
pm naïve bit-level fast bit-level codon-level
1 % 5.56 s (1×) 0.39 s (0.07×) 0.17 s (0.03×)
2 % 5.62 s (1×) 0.79 s (0.14×) 0.17 s (0.03×)
5 % 5.83 s (1×) 1.96 s (0.33×) 0.18 s (0.03×)

Table 7.1: Comparison of execution times of three mutation operators in AGE. The
operators are applied 1000 times to a population of 100 randomly ini-
tialised chromosomes of lengths evenly distributed between 100 and 200
codons, inclusive, in the same environment as used for the experiments in
Chapter 8.

Table 7.1 compares performance of the three versions of mutation as imple-
mented in AGE, when applied with probabilities of 1 to 5 % on 8-bit and 31-bit
codons. For the more usual 8-bit codons, the fast bit-level mutation is always
significantly faster than the naïve version, at 1 % it is faster than the codon-level
mutation, at 2 % it has virtually the same running time. For the 31-bit codons,
the codon-level mutation is always the fastest one.

The fast bit-level mutation provides a performance gain of an order of mag-
nitude for low mutation rates (1 to 2 %) and the standard codon size (8 bits),
which will in most cases make its running time negligible relatively to the overall
running time of the evolutionary algorithm. Further gains from the codon-level
mutations at higher rates and codon sizes are therefore usually inconsequential.
It would be possible to implement a fast codon-level mutation in a similar man-
ner, which would, for the same reason, only make sense for very high mutation
rates.

104

This, of course, does not tell us anything about the effect of of codon-level
mutation compared with bit-level mutation. In Section 5.4 we have argued that
there is no apparent benefit in using codon-level mutation, in Chapter 8 we will
back that up by experiments in two different applications.

105

Chapter 8

Experiments

I will examine several benchmark applications of grammatical evolution, either
previously used in the literature (O’Neill and Ryan, 2003) or in other software
(O’Neill et al., 2008; Nicolau and Slattery, 2006). In each application I will try
to replicate the results of others using a similar setup, and compare the results.
Based on the statistics from the initial experiment, several adjustments to the
parameters and the algorithm itself will be explored.

The goal is to show that AGE is able to produce results, not necessarily better
than, but comparable with those of other implementations, and to demonstrate
how it helps analyse the results and thus guide further experimentation.

8.1 Methodology
Summary of each experiment is presented in a table derived from the “tableau”
format used by Koza (1992), and in a modified form by O’Neill and Ryan (2003).
In addition to the entries used by either of them, I also specify the algorithm
(entries Algorithm, Initialisation, Selection, Operators, GE Mapping).

I always compare data from multiple runs, either 200 or 1000. (O’Neill and
Ryan (2003) use always 100 runs, Koza (1992) used hundreds of runs.) In case
of AGE these are always runs from one sequence with RNG seed 42, in case of
GEVA these are runs with RNG seeds 1, 2, . . . , n.

Whenever I describe a difference of two sets of numerical results (or rates of
success in two sets) as significant, it means that the statistical hypothesis that
the two sets are samples of a statistical population with the same mean (or that
the probabilities of success in the two sets are the same), has to be rejected on
the level of statistical significance of 5 %. Accordingly, whenever a difference is
said to be insignificant, the same hypothesis has to be rejected on the level of
5 %.

I use Student’s t-test for testing equivalence of means, and a simple test of
equal proportions for testing the probabilities of success.1

As the most important measure of success I adopt the cumulative rate of
finding the solution over a number of runs, as used in the experiments by O’Neill
and Ryan (2003). The solution is assumed to be found when the fitness of the

1Both are computed using the R stats package (functions t.test and prop.test), which
is part of the open-source R Project for Statistical Computing available at http://www.
r-project.org/.

106

http://www.r-project.org/
http://www.r-project.org/

best individual of a given generation reaches a certain level. The level is chosen
separately for each application so that is ensures the solution has really been
found. For the purpose of these test, however, I let the algorithms continue to
run even after finding the solution.

As a measure of performance I use the CPU time consumed by a number
of runs of an algorithm as reported by the standard UNIX time utility (user
and system time combined). If multiple invocations of the program are needed,
their times measured in hundredths of seconds are added up. Note that the
“wall clock” running time compared to the CPU time may be either lower, when
multiple CPUs or cores are used, or higher, when other the CPU is shared with
other processes.

All times have been measured on a 2.4 GHz Intel Core 2 Duo machine with
2 GB of RAM (Apple MacBook MB467LL/A), on Mac OS X 10.5.7. AGE has
been compiled using Apple’s build of GCC version 4.0.1 with optimisation flag
-O3,2 GEVA has been compiled and executed on Java SE 1.6.0_07 HotSpot 64-Bit
Server VM with flags -Xms256m -Xmx1024m.3 Assertions are disabled (-DNDEBUG
for C++, default for Java). Optimised settings for both the C++ compiler and
the Java Virtual Machine are used in order to give equal conditions to both
implementations.

8.2 Symbolic regression
Symbolic regression has been already discussed as an example problem in Sec-
tion 2.5. In this experiment we will use the same target function as in the symbolic
regression example supplied with GEVA (O’Neill et al., 2008, sec. 6.6). Initially
we will also use a very similar setup and try to replicate the results achieved by
GEVA.

8.2.1 Initial experiment
We first need to examine the algorithms and methods used in GEVA, which we
already did in Section 3.2. GEVA’s configuration file for the symbolic regression
example (SymbolicRegression.properties) tells us which parameters and al-
gorithm elements are used, including the parameters of the GE mapping: the
grammar and the maximum number of wrap events. We have already said that
GEVA uses a remarkably large codon size of 32 bits and suggested that while
it may suit well the codon-level mutation operator, it is an unnecessarily high

2This GCC optimisation level enables inlining, and therefore provides the best result for
AGE’s C++ code, which is based on the Standard Template Library. The only exception to
this setting is the Lua library used by AGE, which is compiled separately with its own default
optimisation flag -O2.

3The settings were chosen according to the Java Tuning White Paper available at http:
//java.sun.com/performance/reference/whitepapers/tuning.html. The machine used
for testing is considered “server-class” by the Java Virtual Machine (JVM), therefore the flags
-server and -XX:+UseParallelGC are enabled implicitly. Other optimisation options sugges-
ted by the white paper, namely -Xmnn, -XX:+UseBiasedLocking, -XX:+AggressiveOpts were
tested, but did not have any noticeable effect on GEVA using this release of JVM. Version
1.6.0_07 is the latest release available for Mac OS X as of this writing.

107

http://java.sun.com/performance/reference/whitepapers/tuning.html
http://java.sun.com/performance/reference/whitepapers/tuning.html

value. While codon size cannot be changed in GEVA, we can compare results of
different codon sizes using AGE.

Second, we need to examine the fitness function used in the example supplied
with GEVA:

• The fitness function uses JScheme to evaluate expressions, and therefore
the grammar used for symbolic regression is constructed to generate prefix
expressions (see Listing 8.1). We construct an equivalent grammar for infix
expressions suitable for Lua or C to be used in AGE (see Listing 8.2). This
is merely a technical difference, which can affect performance, but not the
results.

• The fitness cases are chosen randomly from the interval [−1, 1) each time
an individual is evaluated. This is a highly unusual approach. Koza (1992,
sec. 6.4.1) suggests that fitness cases might vary between generations, as
opposed to between individuals, but remarks that it prevents reuse of pre-
viously computed values. When fitness cases vary within one generation,
it is questionable whether the computed values can be compared with each
other, and thus used effectively for selection. Additionally, GEVA caches
fitness values based on phenotype (see Section 3.2, this caching is enabled
for the symbolic regression example), which entirely defeats any purpose
the varying fitness cases might have, as the changed fitness cases are never
applied to individuals who survived from the previous individuals. Fitness
is the sum of squared errors over the fitness cases.

As AGE does not use any caching mechanism, and it is unclear how the
random fitness cases affect performance, GEVA will be tested (1) with its initial
setup, (2) without caching, and (3) with fixed fitness cases. Similarly AGE will
be tested with both (1) 31-bit codons (of the supported sizes the one closest to
32 bits in GEVA), and (2) the usual 8-bit codons :

– GEVA (1): codon size: 32, random fitness cases, cached.
– GEVA (2): codon size: 32, random fitness cases, not cached.
– GEVA (3): codon size: 32, fixed fitness cases, cached.
– AGE (1): codon size: 31, fixed fitness cases.
– AGE (2): codon size: 8, fixed fitness cases.
The remaining parameters are summarised in Table 8.1:

<expr> ::= (<op> <expr> <expr>) | <var>
<op> ::= +|-|*
<var> ::= x0|1.0

Listing 8.1: Simple grammar for symbolic regression in JScheme (prefix expressions),
used in GEVA.

108

Objective: Find a function of one variable x represented by an
expression to fit a given set of the target function values at
specified points. The target function is x4 + x3 + x2 + x.

Terminal operands: x, 1.0.
Terminal operators: +, −, · (all binary).
Fitness cases: GEVA (1–2): 20 random points from the interval [−1, 1).

GEVA (3), AGE (1–2): 20 fixed points (−1.0, −1.1, . . . ,
1.9).

Raw fitness: The sum of squared errors taken over the 20 fitness cases.
Scaled fitness: Same as raw fitness.
Algorithm: Simple with elite size: 10, generations: 101, population:

500.
Initialisation: Random, fixed chromosome length: 200.
Selection: Tournament, size: 3.
Operators: Codon-level mutation, probability: 0.02.

Fixed-length one-point crossover, probability: 0.9.
GE mapping: Grammar: see Listing 8.1 and 8.2. Maximum wraps: 3.

Codon size: 32, 31, 8 for GEVA (1–3), AGE (1), AGE (2)
respectively.

Success predicate: Raw fitness lower than 0.00001. (Effectively ensures
equivalence with the target function regardless of the
fitness cases.)

Table 8.1: Symbolic regression, parameters for tests GEVA (1–3), AGE (1–2).

<expr> ::= (<expr> <op> <expr>) | <var>
<op> ::= + | - | *
<var> ::= x | 1.0

Listing 8.2: Simple grammar for symbolic regression in Lua or C (infix expressions),
used in AGE, equivalent to the grammar in Listing 8.1.

8.2.2 Comparison of results with GEVA
As can be seen in Figure 8.1, the original setup of GEVA fared the worst. The
second setup, without caching, showed only a mild improvement, having a signi-
ficantly higher success from generation 33 onward. This, however, was offset by
an almost doubled running time. The third setup, with a success rate significantly
higher than the original from generation 6 onward, achieved the highest success
rate for GEVA without any remarkable performance penalty. Success rates in
the last generations of these two setups were 249, 255, and 404 for GEVA (1),
(2), and (3). As we can see the use of fitness cases randomly varied within in a
population reduces the success rate drastically, with or without caching.

The two setups of AGE have both achieved significantly higher success rates
than any setup of GEVA in all generations, eventually reaching rates of 706
and 701. The results achieved with 8-bit codons are significantly better in the
generations 4 to 89, and significantly worse only in the last four generations.
While the performance was not affected by the use of 31-bit codons, there is no
evidence that the larger codons are of any substantial benefit in this application.

Given the same algorithms and parameters (except the codon sizes 31 and
32), the large difference in success rate between GEVA and AGE is curious. It

109

Generations

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

 in
 1

00
0

ru
ns

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00 GEVA (1)
GEVA (2)
GEVA (3)
AGE (1)
AGE (2)

Figure 8.1: Cumulative frequency of success of AGE and GEVA in symbolic regres-
sion.

suggests that there are important differences in implementation, not obvious from
the documentation of GEVA.

The statistics from generation 0 (Table 8.2), before applying any operators
and selection, show that both GEVA and AGE start with roughly the same
population characteristics as expected. This further supports that the algorithms
behave differently despite the same settings.

The initial tests have proved that AGE produces results competitive with
GEVA. The performance is compared in Figure 8.2. Both setups of AGE are
approximately 10 times faster than the original setup of GEVA.

110

GEVA (3) AGE (1) AGE (2)
Invalid individuals 7.94 7.41 7.41

Best fitness 7.20 5.33 5.21
Worst fitness † 2606.61 1763.05

Average fitness 60.92 63.57 54.69
Variance of fitness 6.49 · 105 5.38 · 106 3.69 · 105

Average chromosome length 200 200 200
Average used codons 15.20 15.29 15.29
Average wrap events † 0 0
Average tree height 4.09 4.12 4.12

† Data not available.

Table 8.2: Symbolic regression, comparison of statistics from generation 0 (averaged
over 1000 runs).

GEVA (1) GEVA (2) GEVA (3) AGE (1) AGE (2)

C
P

U
 ti

m
e

in
 s

ec
on

ds
 c

on
su

m
ed

 b
y

10
00

 r
un

s
0

20
00

40
00

60
00

80
00

10
00

0

5685.48 s 10333.13 s 5941.33 s 613.41 s 618.2 s

Figure 8.2: Running times of AGE and GEVA for symbolic regression.

8.2.3 Further experiments
In the following set of experiments we will explore several adjustments to the ini-
tial setup, which mimicked GEVA. We will be interested in effects of the following
changes:

(1) roulette-wheel selection with a scaling instead of tournament selection,
(2) variable-length instead of fixed-length chromosomes,
(3) bit-level instead of codon-level mutation,
We will use the initial setup AGE (2) as our starting point, and in each of the

following configurations we will modify one more parameter or algorithm element:
– AGE (1 ′): roulette-wheel selection, reversal and linear scaling.
– AGE (2 ′): variable-length crossover, random initialisation to 100–150 codons.
– AGE (3 ′): bit-level mutation with probability of 1.5 %.

Generations

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

 in
 1

00
0

ru
ns

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00 AGE (1')
AGE (2')
AGE (3')

Figure 8.3: Cumulative frequency of success of AGE (alternative parameters) in sym-
bolic regression.

As we can see in Figure 8.3, all three setups show a significant improvement,
thanks to the change of selection scheme and addition of a scaling. I have not been
able to reach similar results using tournaments of any size (with other parameters
fixed).

The variable-length chromosomes give us an additional significant improve-
ment, albeit a smaller one.

112

The bit-level mutation resulted has a small but significant adverse effect. The
problem is that, as we have said earlier (Section 5.4), the rates of bit-level and
codon-level mutation do not correspond to each other. If we have chosen exactly
the same rate as for codon-level mutation the effective mutation rate would be
too high in this case. We have tried a lower one, which had a similar but still
different outcome. But what is more important, the fast bit-level mutation had
a 16 % lower running time. The times were 577.15 s for AGE (1 ′), 628.77 s for
AGE (2 ′), and 533.98 s for AGE (3 ′). The setups AGE (1 ′) and AGE (3 ′) were
also faster than the initial experiment (618.2 s), while providing better results.

8.3 Santa Fe ant trail
The Santa Fe ant trail is another benchmark application of evolutionary al-
gorithms. Koza (1992) used it for experiments with tree-based GP citing pre-
vious application of genetic algorithms to the problem. Both GEVA and libGE
are accompanied by an implementation of this application.

The goal is to navigate an artificial ant so that it finds all food lying on a
rectangular grid within a time limit. The ant’s repertoire of actions is limited:

• Left turns the ant left by 90 ° without moving,
• Right turns the ant right by 90 ° without moving,
• Move advances the ant one square forward in the direction it is facing,

eating any food on that square,
• Food-Ahead tests the square the ant is facing for food.

All actions, except the last one, take one unit of time. The grid is wrapped
around a toroidal plane to save the ant from falling off its edge. At the beginning
the ant is placed in the north-west corner facing its first piece of food located on
the east. Other pieces of food are placed to form a trail. The Santa Fe ant trail,
shown in Figure 8.4, is a particular placement of 89 pieces of food on a 32 by 32
grid, which contains an increasingly demanding sequence of gaps and turns.

In genetic programming, the solution has a form of a short program,4 which is
executed in a loop until time runs out. The program is composed of the following
statements:

• actions Left, Right, or Move,
• conditional statements of in the form if foodAhead then block1 else

block2,
• blocks formed from the previous types of statements.

Koza (1992) built blocks of two or three statements in his tree-based GP.
O’Neill and Ryan (2003) use a grammar (Listing 8.3) that can build blocks by
adding one action or a conditional statement at a time, but does not allow blocks
inside conditional statements, reducing them to

4Koza (1992) mentions other, previously used, forms of a solution: a finite automaton rep-
resented as a fixed-length binary string evolved using GA, and a neural network.

113

Empty squares Food Ant

Figure 8.4: The Santa Fe ant trail. 89 pieces of ant food on a 32 by 32 toroidal grid.

if foodAhead then action-or-conditional1 else action-or-conditional2.

The same grammar is used in an example that accompanies libGE. The
Santa Fe ant trail application supplied with GEVA uses yet another grammar
(Listing 8.4), which allows only sequences of actions in conditional statements:

if foodAhead then list-of -actions1 else list-of -actions2.

<code> ::= <line> | <code> <line>
<line> ::= <if-statement> | <op>
<if-statement> ::= if (foodAhead(h)==1) then <line> else <line> end
<op> ::= left(h) | right(h) | move(h)

Listing 8.3: A grammar for the ant trail problem. A Lua equivalent to the C-like
grammar used by O’Neill and Ryan (2003) and in a libGE example.

We will only use the grammar used in GEVA in our experiments, but it is
interesting to note that while the choice of representation in the traditional GP is
limited, grammatical evolution gives virtually endless possibilities. Some gram-
mars may only result in a preference for certain constructions, some like these two
examples may even preclude some constructions from being used. Additionally,
the structure of the grammar affects the mapping process.

We will initially attempt to replicate the results achieved with GEVA.

114

<prog> ::= <code>
<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if (foodAhead(h)==1) then <opcode> else <opcode> end
<op> ::= left(h) | right(h) | move(h)
<opcode> ::= <op> | <opcode> <op>

Listing 8.4: Another grammar for the ant trail problem. A Lua equivalent to the
Groovy grammar used in a GEVA example.

8.3.1 Initial experiment
The initial setup is based on the parameters from GEVA’s configuration file for the
Santa Fe ant trail example (SantaFeAntTrail.properties). This configuration
involves the “sensible” initialisation method. We will also perform the same tests
with the random initialisation method, for reasons that will be explained after
we analyse the results of “sensible” initialisation in GEVA.

The fitness function used in GEVA employs the Groovy scripting language
to evaluate expressions. As in the previous example, we will use an equivalent
grammar for Lua in AGE (see Listing 8.4). The fitness consists, as usual for the
ant trail problem, of a single fitness case, and its value is equivalent to the number
of pieces of food left after the limit of 600 time units. The same fitness function
will be used in AGE. In this case the fitness value can be naturally formulated
as the amount of food either left or consumed. The difference is only technical.

As before, AGE will be tested with both (1) 31-bit codons (of the supported
sizes the one closest to 32 bits in GEVA), and (2) the usual 8-bit codons, resulting
in the following series of tests:

– GEVA (s): codon size: 32, “sensible” initialisation.
– GEVA (r): codon size: 32, random initialisation with length 20.
– AGE (s-1): codon size: 31, “sensible” initialisation.
– AGE (s-2): codon size: 8, “sensible” initialisation.
– AGE (r-1): codon size: 31, random initialisation with length 20.
– AGE (r-2): codon size: 8, random initialisation with length 20.
The remaining parameters, which were based on the configuration of GEVA,

are summarised in Table 8.3,

8.3.2 Comparison of results with GEVA
In this experiment, we will compare results from 200 runs due to the long running
time of GEVA. I initially tested only the sensible initialisation setups GEVA (s)
and AGE (s-1–2). Neither GEVA, nor AGE with 31-bit and 8-bit codons achieved
impressive results, succeeding 5 times, twice, and once in 200 runs. The results of
GEVA were significantly better than those of AGE with 31-bit and 8-bit codons
from generation 39 and 41, but as we will see, GEVA did not use the specified
initialisation method, invalidating this comparison.

To discover what might have caused the difference between AGE and GEVA,
I have, as in the previous experiment, examined the statistics from both tools.
The statistics from generation 0 (Table 8.4) have shown exactly the same num-
bers from the two sets of runs of AGE. This has been expected as a result of

115

Objective: Find a program for navigating the ant so that it finds all 89
pieces of food on the Santa Fe trail within 600 time units.

Terminal operands: None.
Terminal operators: Left, Right, Move, Food-Ahead.
Fitness cases: One fitness case.
Raw fitness: Number of pieces of food left on the grid after 600 time

units of running the ant’s program in a loop.
Scaled fitness: Same as raw fitness.
Algorithm: Simple with elite size: 10, generations: 101, population:

100.
Initialisation: Ramped (“sensible”) with maximum height 6 for

GEVA (s), AGE (s-1–2). Random with length 20 for
GEVA (r), AGE (r-1–2)

Selection: Tournament, size: 3.
Operators: Codon-level mutation, probability: 0.01.

Fixed-length one-point crossover, probability: 0.9.
GE mapping: Grammar: see Listing 8.4, Maximum wraps: 3. Codon

size: 32, 31, 8 for GEVA (1–2), AGE (s-1, r-1), AGE (s-2,
r-2) respectively.

Success predicate: Raw fitness equivalent to 0. (All food eaten.)

Table 8.3: Santa Fe ant trail, parameters for tests GEVA (1–2), AGE (s1–2),
AGE (r1–2).

the “sensible” initialisation method. Additionally, each production rule used is
represented by one codon: all codons should be used exactly once when mapping
the initial population.5 In the statistics from AGE, this is correctly reflected by
exactly the same value of the average chromosome length and the average number
of used codons 4.97.

GEVA (s) AGE (s-1) AGE (s-2)
Invalid individuals 0 0 0

Best fitness 71.68 76.07 76.07
Worst fitness † 89.00 89.00

Average fitness 88.11 88.47 88.47
Variance of fitness 7.89 4.91 4.91

Average chromosome length (!) 8.52 4.97 4.97
Average used codons (!) 9.01 4.97 4.97
Average wrap events † 0 0
Average tree height 5.65 4.72 4.72

† Data not available.

Table 8.4: Santa Fe ant trail, comparison of statistics from generation 0 (averaged
over 200 runs).

GEVA, however, reports a higher number of used codons (9.01) than chro-
mosome length (8.52). This is possible only if at least some of the individuals

5In libGE, there is an option to append a “tail” of random unused codons. GEVA does
not have any such option. AGE supports it optionally, but in has not been enabled in this
experiment. The option would not, however, cause wrapping events to occur.

116

Generations

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

 in
 2

00
 r

un
s

0 20 40 60 80 100

0
5

10
15

20 GEVA (s)
AGE (s−1)
AGE (s−2)

Figure 8.5: Cumulative frequency of success of AGE and GEVA (“sensible” initial-
isation) in the Santa Fe ant trail. Note: GEVA did not use the specified
initialisation method properly. (Scale from 0 to 20 out of 200.)

undergo wrapping, which in turn is possible only if the “sensible” initialisation is
implemented incorrectly. Additionally, the average tree height reported by GEVA
(5.65) is higher than it should be. The minimum tree height for this grammar
is 4, the maximum specified height for the initialisation is 6, which should result
in one third of the population of tree height 4, one third of tree height at most
5, and one third of tree height at most 6.6 The average tree height should not
therefore be higher than 5.

The better results were, as we can now see, caused by a bug in GEVA, which
suggests that the “sensible” initialisation does not work better than random ini-
tialisation in conjunction with this form of grammar and the maximum tree height
6. This is why I have repeated the same test with random initialisation.

In this second test (Figure 8.6), where both AGE and GEVA used the same
initialisation method, the results of AGE with 8-bit codons and GEVA were in
the end of the run significantly better than the previous ones of GEVA, reaching
7 successful runs out of 200. AGE with 31-bit codons had a success rate of 6
runs. The three configurations achieved virtually identical results: without signi-
ficant differences in most generations including the last one. As in the previous
experiment, there is no evidence that the 31-bit codons are of any benefit.

The initial tests have proved that AGE produces results competitive with
GEVA. The performance is compared in Figure 8.7. When “sensible” initialisa-
tion is used, AGE is approximately 29 times faster then GEVA, when random
initialisation is used, it is approximately 26 times faster, regardless of codon size.

6This partitioning of the population is violated only if generation of unique individuals is
required, and the tree heights do not allow this, but GEVA does not support generation of
unique individuals. AGE does support it in the same way it was originally implemented by
Koza (1992) for his ramped initialisation, but in has not been enabled in this experiment.

117

Generations

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

 in
 2

00
 r

un
s

0 20 40 60 80 100

0
5

10
15

20 GEVA (r)
AGE (r−1)
AGE (r−2)

Figure 8.6: Cumulative frequency of success of AGE and GEVA (random initialisa-
tion) in the Santa Fe ant trail. (Scale from 0 to 20 out of 200.)

GEVA (s) GEVA (r) AGE (s−1) AGE (s−2) AGE (r−1) AGE (r−2)

C
P

U
 ti

m
e

in
 s

ec
on

ds
 c

on
su

m
ed

 b
y

20
0

ru
ns

0
20

00
40

00
60

00
80

00
10

00
0

11953.18 s 10772.04 s 410.52 s 405.95 s 406.07 s 400.31 s

Figure 8.7: Running times of AGE and GEVA for the Santa Fe ant trail.

8.3.3 Further experiments
In the following set of experiments we will explore several adjustments to the
initial setup. The experiments will be performed with a population of 500 so
that the changes are more visible. Additionally, they will be done with bit-level
mutation (1% probability), a steady-state algorithm (1.0 replacement), roulette-
wheel selection, linear scaling (factor 8), and standard fitness (food eaten instead
of food left). Other parameters will be the same as in AGE (2).

As we are using a larger population, there is no point in comparing the res-
ults to the initial ones. Instead we will be interested in comparison of different
initialisation methods:

– AGE (1 ′): random initialisation to 15–25 codons
– AGE (2 ′): “sensible” initialisation with maximum height 6.
– AGE (3 ′): ramped initialisation (default settings) with maximum height 6.
– AGE (4 ′): ramped initialisation with maximum height 6 and uniqueness.
As we can see in Figure 8.8, both the “sensible” and default ramped initialisa-

tion had significantly worse results (success rates 35 and 34 out of 200) than the
simple random initialisation (success rate 45 out of 200), and the final difference
between the two is insignificant. The ramped initialisation with uniqueness, on
the other hand, showed a significant improvement (success rate 47 out of 200).
This is because it actually generates trees higher than the maximum 6, to provide
a wide enough range of unique individuals, as we use the same method for gen-
eration of unique individuals as Koza (1992) for his ramped initialisation. In this
way it automatically corrects the unnecessarily low requirement for maximum
tree height.

Generations

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

 in
 2

00
 r

un
s

0 20 40 60 80 100

0
20

40
60

80
10

0

AGE (1')
AGE (2')
AGE (3')
AGE (4')

Figure 8.8: Cumulative frequency of success of AGE (alternative parameters) in the
Santa Fe ant trail. (Scale from 0 to 100 out of 200.)

The different initialisation methods affected performance only slightly. The
running times for (200 runs each) of AGE (1 ′), AGE (2 ′), AGE (3 ′), and AGE (4 ′)

119

were 1963.09, 1874.33, 1861.94, and 2014.88 seconds respectively.

8.4 Conclusion
AGE has produced competitive results with settings emulating GEVA in both
applications. In the symbolic regression experiment it had almost double the
success rate of GEVA, in the Santa Fe ant trail experiment it had virtually the
same success rate. Surprisingly, it also outperformed GEVA in running time by
an order of magnitude. This applies regardless whether AGE used 8-bit or 31-bit
codons.

By the subsequent modification of parameters, we have shown the usefulness
of additional algorithm elements present in AGE:

• Fast bit-level mutation has better performance than codon-level mutation
for the low mutation rates usually used in GE.

• The ramped initialisation (generalised “sensible” initialisation) is no worse
than the original “sensible” initialisation. In contrast with GEVA, it is
implemented correctly and supports generation of unique individuals, which
improved results in our experiment.

• The roulette-wheel selection in conjunction with appropriate scalings achieved
better results than the tournament selection used in GEVA.

I have also tried to compare results from the ant trail application with libGE,
which implements it in one of its examples. I have been able to build the most
recent version of libGE on Mac OS X, which is a fully POSIX-compliant Unix
system, but the tested example crashed consistently both with GCC and Lua
evaluation. As I have found out, the crashes have been reported on the official
libGE forum in 2004 and again in 2006 without any reaction.7 As of 2009 libGE
is no longer maintained.

It would be very valuable to reproduce the results presented by O’Neill and
Ryan (2003). The book unfortunately does not provide precise parameters used
in the experiments. Throughout its whole text there is not a single mention of any
particular selection scheme or scaling. Some of the algorithm elements used in the
experiments are named but not defined precisely (such as steady-state evolution).
The software used for the experiments is not identified, but it is neither libGE
nor GEVA, both of which were developed later.

7The official libGE forum topic mac os x 10.4.5 on Intel Core Duo & PowerPC G5 at
http://bds.ul.ie/libGE/FF/viewtopic.php?t=10, posts by the users oneillm from 2004 and
cretog8 from 2006.

120

http://bds.ul.ie/libGE/FF/viewtopic.php?t=10

Chapter 9

Conclusion

9.1 Summary
We have described and discussed grammatical evolution, a grammar-based ap-
proach to genetic programming introduced by Michael O’Neill (described by
O’Neill and Ryan, 2003), in the context of relevant methods of genetic program-
ming. We have examined the existing implementations of grammatical evolution,
and developed a new one. This new software framework, AGE, attempts to
avoid the deficiencies of previous implementations and stresses the reproducib-
ility of results. In the course of designing, implementing and testing AGE, we
have pointed out the areas of grammatical evolution that would benefit from
further research. The finished software tool has been tested in two benchmark
applications. It proved itself capable of delivering competitive results, which are
also reproducible and allow for further analysis. Additionally, it outperformed
the only other relevant implementation by an order of magnitude in terms of
computational time. Several experiments have been conducted to show how to
take advantage of the algorithm elements implemented in AGE and improve the
results in the benchmark applications.

In the introductory chapter, we have focused on the areas essential for a sound
design of a software framework for grammatical evolution: the notion of fitness,
and its pivotal role in evolutionary algorithms, the genotype-phenotype distinc-
tion as understood in grammatical evolution, identification and clear description
of the most widely used algorithm elements.

Following this introduction, we have reviewed the two major existing imple-
mentations of GE in Chapter 3. We have noted that there are two approaches
to implementing GE: as a module for an existing EA environment, or as a com-
prehensive framework with direct support for GE. The former path has been
taken by libGE, the latter by GEVA. By examining the implementations, we
have recognised the risks of the two approaches: clumsiness and poor integration
in the case of a GE module; poor documentation and an unclear design rationale
in the case of the full-fledged environment. We have also reviewed both existing
implementations with respect to the methods and standard algorithm elements
presented in the introduction, and described their general characteristics such as
the form of output and portability. This has shown their strengths and weak-
nesses.

In Chapter 4 we have set the goals for AGE, a new implementation of gram-

121

matical evolution. We have opted for implementing it as a stand-alone modular
framework for evolutionary algorithms with direct support for GE. The most im-
portant goals are a clean, comprehensive implementation of standard algorithms,
modularity, an adequate documentation, output suitable for further analysis, re-
producible results, and consequently also portability.

Both the overall design resulting from these goals and other important design
decisions were described in Chapter 5. When planning the implementation of al-
gorithm elements, we have pointed out the possible weak points of some methods
used in conjunction with grammatical evolution, namely the “sensible” initialisa-
tion (devised by O’Neill and Ryan, 2003), and the mutation operators (bit-level
mutation, codon-level mutation, and duplication). Two improvements have been
suggested and implemented in AGE: fast bit-level mutation, and a modification
to the “sensible” initialisation. We have acknowledged the interactions between
the operators, initialisation schemes and the structure of the grammar used for
the mapping. We have argued that this area of grammatical evolution is in need
of a more thorough research, which is, however, out of scope of this thesis.

The finished software tool has been documented in Chapter 6 and Chapter 7
with references to the previously described methods and techniques.

Finally, in Chapter 8, AGE has been tested in two benchmark applications,
and the results have been compared with the only other relevant implementation,
GEVA (O’Neill et al., 2008). AGE produced competitive results, and also out-
performed GEVA by an order of magnitude in terms of computational time: 10
to 29 times based on application (with the same settings). Further experiments
with the two applications have been conducted. The experiments have shown
viability of the modifications suggested in Chapter 5.

9.2 Ideas for further research
This thesis and its accompanying software project have fulfilled its goals, but as
we have stated in Chapter 1, it is meant to serve as a tool for further experiments
and research.

The future research of grammatical evolution, and possibly other grammar-
based methods of genetic programming, can focus on two areas that complement
each other: modifications to the mapping, and adaptation of existing methods to
the needs of GE of evolutionary algorithms or development of new, more suitable
ones.

Grammars
Obviously, the choice of the grammar delimits the search space. Moreover, equi-
valent grammars differing only in their form encode a preference for certain struc-
tures. (Examples are provided in Section 2.5.1 and Section 8.3.) This has been
realised by O’Neill and Ryan (2003), who suggest a dynamic co-evolution of a
grammar for further research.

When examining the “sensible” initialisation method in Section 5.2 we have
pointed out that converting the grammar to some predefined form can make the
mapping, and consequently the operators, behave more predictably. For instance,
we could require the right-hand side of each production rule to contain at least

122

one nonterminal. The standard forms (such as Chomsky normal form or Graibach
normal form), which were devised for different purposes, may not be useful for
grammatical evolution: it clearly is not sufficient that the form is clearly defined,
it must have properties useful in conjunction with the mechanisms of the mapping.

The use of predefined grammar forms seems to go in the opposite direction
of the dynamic co-evolution, but in fact the two approaches are not mutually
exclusive: the conversion to a certain form could be used as a part of initialisation
in the evolution of the grammar.

A specific area we have briefly touched in Section 2.5.1 is the evolution of eph-
emeral constants. Dempsey et al. (2009) have already conducted some research
in this area.

Mapping

The mapping process devised for grammatical evolution could be changed radic-
ally (some possibilities are suggested by O’Neill and Ryan, 2003, sec. 9.2). There
are, however, also ways to affect the mapping indirectly, which leads us again to
the structure of the supplied grammar, and also to the codon size. The codon
size could be either chosen automatically based on the numbers of productions
per nonterminal in the grammar, or it could also be subject to evolution.

Algorithm elements

As we have noted in Section 2.6.5, the effective mutation rate of the bit-level
mutation is determined jointly by the codon size, length of the chromosomes,
structure of the applied grammar and wrapping. Additionally, as we have said
in Section 5.4, both the bit-level mutation and the codon-level mutation tend
to have an all-or-nothing change effect on the phenotype, instead of affecting it
locally. This leaves a lot of room for research of alternative mutation operators.

The “sensible” initialisation, introduced by O’Neill and Ryan (2003) as an
analogue of Koza’s ramped half-and-half initialisation, has been shown to be
helpful, but as we have recognised in Section 5.2, the algorithm has been designed
somewhat arbitrarily. As demonstrated in Chapter 8, the special treatment of
recursive productions is indeed superfluous. An improved initialisation operator
could take into account the structure of the grammar in a more effective way.

We have also briefly mentioned fitness sharing in Section 2.6.4, a technique
that could be adapted for use in grammatical evolution.

O’Neill and Ryan (2003, sec. 9.2) suggest other, even more significant changes,
such as employment of “competent GAs”, which have improved scaling charac-
teristics, or alternative search strategies.

Evolutionary dynamics

The need for a more thorough investigation of the dynamics of the evolutionary
process has been already acknowledged by O’Neill and Ryan (2003, sec. 9.2).

123

Applications and experiments
As we have said in Section 8.4, it would be very valuable if the results presented by
O’Neill and Ryan (2003) could be reproduced. I am unaware of any other direct
comparison of results achieved by GE and other methods of genetic programming,
unfortunately the authors did not mention many important details about the
experiments.

The experiments presented in this thesis serve primarily for demonstration of
AGE and its comparison with GEVA. It would be useful both to compare results
in benchmark applications with methods other than GE and develop real-world
applications that would fully exploit the ability of GE to evolve programs in any
language.

124

Chapter 10

Changes to the Original Text

This text was originally written as a bachelor thesis, which was successfully de-
fended in September 2009. Since then it has been tweaked a little bit. None of
the changes are substantial, but I nevertheless provide a full list of them in this
chapter:

23 November 2011, version 1.0.2
• Licence: Now licensed under the freer Creative Commons Attribution 3.0

Czech Republic Licence (“CC-BY”).

• Pages 51, 56: references to documentation of features added in AGE v1.1,
provisionally in a separate file Documentation-addendum-1.1.pdf. (I plan
to merge this, the addendum, and parts of my master thesis.)
Changes to the software are documented separately in the CHANGES file.

5 April 2010, version 1.0.1
• Formatting: added hyperlink highlights for better onscreen reading (not

visible when printed), typography tweaks.

• Title pages: a version number added.

• Page 5: licence terms added.

• Page 12: a reference to Chapter 10 (this chapter) added.

• Page 20: erroneous “line Section 7” replaced with correct “line 7”.

• Page 47: NetBSD mentioned among the supported platforms.

• Page 49: variable assignments (INSTALL_PREFIX=. . . and EXTRAFLAGS=. . .)
swapped with targets (install, ansi, and all) in make invocations for
better clarity. (While any order works both in BSD and GNU make, the
BSD make documentation specifies that variables go first, which is also
more intuitive.)

• Page 49: the first sentence of the Manual build procedure section rephrased.

125

• Page 54: the numbers in the paragraph referring to Listing 6.2 and List-
ing 6.3 (page 55) adjusted to reflect the updated listings (see below). No
change in wording made.

• Page 55: Listing 6.2 and Listing 6.3 updated to transcribe actual output
from the final version of AGE (1.0). The original version mistakenly con-
tained outputs from an earlier development version. (The output from
versions 1.0 and 1.0.1 is identical.)

• Page 100: a note about licence terms of this text added, copyright date
updated.

• Page 102: superfluous comma after “realise” deleted.

• Pages 119–120: Figure 8.8 updated to reflect a bug fix made in AGE ver-
sion 1.0.1, which affected the results of the AGE (4 ′) configuration (ramped
initialisation with uniqueness in the Santa Fe ant trail). The resulting
success rate for that configuration (47 out of 200) was explicitly added
to the text, and the running time was updated from 1991.57 seconds to
2014.88 seconds (a 1% change). All assertions made in the original version
still hold.

• Page 120: a full stop added after “[. . .] used in the experiments”.

• Page 125: Chapter 10 (this chapter) added.

Changes to the software made in version 1.0.1 are documented separately in
the CHANGES file.

20 July 2009, the original bachelor thesis
The original thesis was not published on the web, but is available in the library
of Faculty of Mathematics and Physics, Charles University in Prague. It differs
from the text you are reading only as indicated in the list above.

126

Bibliography

Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. Ge-
netic programming: an introduction: on the automatic evolution of computer
programs and its applications. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1998. ISBN 1-55860-510-X.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

Ian Dempsey, Michael O’Neill, and Anthony Brabazon. Foundations in Gram-
matical Evolution for Dynamic Environments, volume 194 of Studies in Com-
putational Intelligence. Springer, 2009. URL http://www.springer.com/
engineering/book/978-3-642-00313-4.

Luc Devroye. Non-Uniform Random Variate Generation. Springer Verlag, 1st
edition, 1986. URL http://cg.scs.carleton.ca/~luc/rnbookindex.html.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, 1989. ISBN 0201157675.

John R. Koza. Genetic programming: On the programming of computers by
natural selection. MIT Press, 1992. ISBN 0-262-11170-5.

Richard Lewontin. The genotype/phenotype distinction. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. 2008. URL http://plato.
stanford.edu/archives/fall2008/entries/genotype-phenotype/.

Miguel Nicolau and Darwin Slattery. LibGE Documentation. Biocomputing-
Developmental Systems Centre, University of Limerick, version 0.27alpha1 edi-
tion, 2006. URL http://bds.ul.ie/libGE/documentation.html.

Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Springer, 1st edition, 2003.

Michael O’Neill, Erik Hemberg, Conor Gilligan, Eliott Bartley, James McDer-
mott, and Anthony Brabazon. GEVA – Grammatical Evolution in Java (v 1.0).
Technical report, UCD School of Computer Science and Informatics, 2008. URL
http://www.csi.ucd.ie/files/ucd-csi-2008-09.pdf.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008. URL http://www.
gp-field-guide.org.uk. (With contributions by J. R. Koza).

127

http://www.springer.com/engineering/book/978-3-642-00313-4
http://www.springer.com/engineering/book/978-3-642-00313-4
http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://plato.stanford.edu/archives/fall2008/entries/genotype-phenotype/
http://plato.stanford.edu/archives/fall2008/entries/genotype-phenotype/
http://bds.ul.ie/libGE/documentation.html
http://www.csi.ucd.ie/files/ucd-csi-2008-09.pdf
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

	Introduction
	Introduction to Grammatical Evolution
	Genetic programming
	Fitness, a broader view
	Genotype and phenotype
	Grammatical evolution
	GE example: symbolic regression
	Grammar
	Fitness function
	Evaluation of example individuals

	Search algorithm elements
	Initialisation
	Fitness evaluation
	Selection
	Fitness scaling
	Operators
	Variations to the algorithm

	Existing Implementations
	libGE
	GEVA
	Other implementations
	Conclusion

	Goals
	Implementation of standard algorithms
	Modularity
	Documentation
	Output and results
	Performance

	Design Decisions
	Overall design
	Ramped initialisation
	Evaluation in C and Lua
	Mutation operators
	Portability

	User Documentation
	Building and installation
	Command line interface
	Implemented components
	Initialisers
	Selectors
	Fitness scalings
	Crossover operators
	Mutation operators
	Implemented applications

	File formats
	XML data
	Text data

	Application programming interface
	Basic data types
	Errors
	Random numbers
	Fitness
	Individuals
	Components
	Grammatical evolution
	Command line tool

	Tutorial for application developers
	Licence

	Developer Documentation
	Selection schemes
	Fast bit-level mutation

	Experiments
	Methodology
	Symbolic regression
	Initial experiment
	Comparison of results with GEVA
	Further experiments

	Santa Fe ant trail
	Initial experiment
	Comparison of results with GEVA
	Further experiments

	Conclusion

	Conclusion
	Summary
	Ideas for further research

	Changes to the Original Text

